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DECENTRALIZED CONTROL OF LARGE-SCALE SYSTEMS:

FIXED MODES, SENSITIVITY AND PARAMETRIC ROBUSTNESS

Ahmed Tarras

Thesis, Universit_ Paul Sabatier

CHAPTER I - GENERAL DESCRIPTION OF COMPLEX SYSTEMS

1.1 NOTION OF COMPLEXITY

/I*

The increasing complexity of dynamic systems has led to a

considerably development of mathematical tools for the analysis,

optimization and control of such systems.

First, let us try to define this notion of complexity: Simon

(SIM-62) defines a complex system as consisting of a large number

of parts which are interconnected in a complicated (unsimple)

manner. _iljak (SIL-83) introduces the three following

characteristics:

a) Large dimension: this aspect is often considered to be

the largest source of complexity.

b) Uncertainty: it is assumed that the nature of a complex

system cannot be accurately known, whether it be a deterministic

or stochastic environment. Uncertainty is essentially found at

the interconnection level between the various parts of the system

(subsystems). The intrinsic features of a subsystem may be

measured or locally predicted in a satisfactory manner in most

practical situations.

/2
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c) Structural constraints: the existence of structural

constraints on the flow of information between subsystems makes

the application of conventional control methods difficult, even

on small scale systems.

Titli (TIT-83a) makes a distinction between a large system

and a complex system. The notion of complexity and complex

systems can therefore not be characterized simply and directly,

but regardless of the nuance retained, the complexity of the

process always remains one of the main challenges to systems

theory.

In the text that follows, we shall consider large scale

systems which we will call complex systems, of which there are

many examples: electrical power networks, urban traffic networks,

communication networks, ecological systems, social systems,

polytechnic systems, etc.

1.2 METHODS OF CONTROLLING COMPLEX SYSTEMS

Since the mathematical controls which described systems

behavior are of considerable size, conventional methods and

existing numerical techniques have proven to be inadequate for

treating certain problems, particularly because of the presence

of:

-Massive calculations and therefore of extensive computer

time and high computer costs,

-Large storage requirements,

-Presence of several dynamics in the system,

-Multiple criteria,

-Structural constraints on the flow of information between

the different parts of the system, leading to prohibitive

computer costs and equipment.

Accordingly, new methods were developed which may be



classified: decomposition methods, dimension reduction methods

and multi-criteria optimization methods.

1.3 DECOMPOSITION METHODS

/3

These methods are essentially classed into 3 groups:

1.3.1. Horizontal or Spatial Decomposition

In order to decrease the calculation problems and after

defining a coupling system, the process is broken down. This

makes it possible to formulate the overall problem based on a

certain number of distinct small scale problems, which may

therefore be processed in a reasonable amount of time. Each

subproblem is therefore the responsibility of a local control

unit whose actions are coordinated (hierarchical control) or

distributed (decentralized control). Methodologies using this

decomposition are the hierarchical control (SIN-78a, SIN-78b),

the decentralized control (SIN-81, TIT-83b and 86) and the steady

disturbances method.

1.3.2. Vertical or Temporal Decomposition

The control task here is vertically divided into elementary

control tasks, into "control levels". The following levels are

commonly distinguished (figure l.l):

-regulation or direct control,

-optimization (determination of regulator set points),

-adaptation (self-adaptation of model or of control law

directly),

-self-organization (selection of model structures), of the

control as a function of the environment).

The control levels function with different time scales; if

Ti is the intervention period of level i, then we have

/4
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T1 < T2 < T3 < T4. The vertical decomposition

essentially includes the complexity of the control function to be

incorporated. It is used as a hierarchical control (TIT-79) and

is present in the theory of singular disturbances (FOS-81,

FOS-84, KOK-76)

1.3.3. Hybrid Decomposition {Spatio-Temporal)

This decomposition is a combination of the two preceding

decompositions, and is interesting for geographically distributed

systems which have several dynamics.

1.4. METHODS OF DIMENSION REDUCTION

These methods transform the model of the large scale system

(n) into a small scale model (nI <<n) upon which conventional

methods are applicable. Among the most important methods in this

group let us mention Aggregation which was initially developed

for static models in economics (CHI-76) (AOK-68) and then

generalized to dynamics models (BEM-79). It makes it possible to

rediscover several reduction techniques already proposed in

literature individually. The reduced models obtained by these

methods may be used for analysis (stability, etc.), simulation,

monitoring and calculation of suboptimal controls. Some of the

4



structural properties of the original system may be incorporated
in these models.

1.5 MULTI-CRITERIA OPTIMIZATION

In certain situations, the conventional single-criterion

optimization is not valid, such as in the following cases:

A single control unit tries to satisfy conflicting

objectives: minimization of production cost, maximization of

production, or maximization of performance and minimization of
control structure costs.

Several control units affect a single system. This is the
case of an electrical power network made of of several

subnetworks, each under the responsibility of a different

administrative authority.

These problems may be formulated in terms of multi-criteria

optimization involving different concepts of equilibrium

(BAP-80).
/5

Before bringing this chapter to a close, let us return to

two important cases: hierarchical control and decentralized

control.

1.6 HIERARCHICAL CONTROL

A hierarchical control system is essentially made up of

control units arranged in a hierarchy, in a pyramidal structure,

affecting the control process, itself made up of interconnected

subsystems (SIN-78a, SIN-78b).

The control units are divided into two or more levels, and

some have only indirect access to the process to be controlled.



These units receive and process information from higher units.

They then control other units which are lower than them in the

hierarchy and send information to the higher levels to execute

their tasks.
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As we go up this hierarchy, the vision of reality expands,

but the imprecision of the models increases (fig. 1.2).

1.7 DECENTRALIZED CONTROL

A control structure is called "Decentralized" if and only if

all local controls are calculated only as an explicit function of

local information (states, outputs, etc.) (Fig. 1.3) (SIN-83),

(TIT-B6).

6

This is a structure with one control level, no control unit

has an overall view of the entire process. Each unit issues a

local control, assigning each subsystem with a functioning which

6



Fig. 1.3. - Decentralized Control Structure

will provide for satisfactory behavior of the overall system

(stability, subcommittee with respect to a certain criterion,

etc.).

Let us recall here a few of the reasons for using a

decentralized control for complex systems:

(_ The construction of a central control unit, and

transmission lines between the various subprocesses is costly,

particularly for geographically divided systems (electrical power

network, for example).

(_ The transmission of a signal between the various

control units can only delay and distort the transfer of

information.

(_ The instrumentation necessary for carrying out a

decentralized control is simple.

i

(_ As a result of the technological growth of

micro-computing, the cost of local control units is constantly

decreasing.

(_i! Decentralized control enables the local control units

to be completely independent, and thereby increases the robustness

of the system.

These reasons give an idea of the advantages offered by

decentralized control in controlling complex processes. However,,

this control creates new theoretical problems, in

7



particular those associated with the FIXED MODESintroduced by

decentralization (WAN-73b) (SIN-81) (TIT-83B and 86) (TRA-84b).
The latter point is the subject of our thesis, and it will be

studied in detail in the following chapters according to the
following plan:

Let us begin the second chapter by recalling the fundamental

notions of controllability and observability, and the conditions

for the existence of a solution to the problem of stabilization

and the pole placement by centralized control. Let us then

formulate the problem of stabilization and of free pole placement

by a decentralized control, and let us give the main results to

this problem by introducing the notion of FIXED MODES. This

concept is fundamental. In effect, free pole placement, possible

only in the absence of fixed modes and in the presence of unstable

fixed modes, makes stabilization impossible.

After stressing the importance of the notion of fixed modes,

chapters Ill, IV and V discuss the methods of characterizing these
modes. The 3rd chapter summarizes the different methods of

characterizing fixed modes algebraically in the time and frequency
systems and shows the links between the different

characterizations. Furthermore, we propose for the time system, a
characterization of the fixed modes based on the notion of the

sensitivity of the natural values, and in the frequency system a
necessary condition for the existence of fixed modes. We also

give a physical interpretation of fixed modes.

In chapter 4, after reviewing the notions of structural

controllability and observability, two types of fixed modes are

brought to light: STRUCTURALFIXED MODES(structurally

uncontrollable modes in a decentralized manner) and NONSTRUCTURAL

FIXED MODES, then we introduce the algebraic characterizations of

structural fixed modes and apply our approach by sensitivity to
the characterization of such modes.



The 5th chapter discusses the graphic characterization
methods of the two types of fixed modes.

Chapter VI is devoted to the problems of decentralized
stabilization in the presence of fixed modes. It is shown that an

unsteady decentralized control may stabilize the system if the

fixed modes are nonstructural. We then give a summary of

decentralized stabilization methods, using feedback laws varying
in time, and propose the use of a "Vibrational Control" to

stabilize the unstable fixed modes of the system. We therefore
establish the existence of vibrational and decentralized feedback

laws permitting the stabilization of the nonstructural fixed modes

of the system. The stabilization of structural fixed modes by the
vibrational system is also discussed.

The 7th chapter introduces a summary of methods of selecting

a control structure (static or dynamic) permitting a free pole
placement of a system. Furthermore, four procedures are developed

to find an optimal control structure avoiding fixed modes.
8

The 8th chapter is concerned with algorithms for summarizing
decentralized controls in the absence of fixed modes. After

presenting a summary of most algorithms which exist in literature,

we add parametric robustness considerations, formulate the problem

of the corresponding optimization and propose an algorithm for

calculating a parametrically robots control (minimization of the

sensitivity of the quadratic criterion with respect to the

variations of the system parameters), using the projected gradient
method.

Finally, the last chapter introduces the results of applying

the methodologies proposed in the various chapters to a model for
a ship steam generator.



1.8 CONCLUSION

In this introductory chapter, we gave a brief summary of the

methods of controlling complex systems, specifying the strict

framework in which we are in, i.e. "THE DECENTRALIZED CONTROL OF

LARGE SYSTEMS: FIXED MODES, SENSITIVITY AND PARAMETRIC

ROBUSTNESS", after giving a few reasons for using such a control.

CHAPTER II - POLE STABILIZATION AND PLACEMENT IN LINEAR SYSTEMS

II.1 INTRODUCTION

After briefly recalling the fundamental notions of

controllability and observability of steady linear systems, this

chapter discusses the problems of pole stabilization and

placement of linear systems under structural constraints, by

introducing the notion of fixed modes, and providing the necessary

and sufficient conditions for the existence of a solution to these

problems (in the time and frequency systems).

II.2 CONTROLLABILITY AND OBSERVABILITY

Let us consider a system which is dynamic, linear,

multivariable, continuous and invariant in time, described by:

0

X(t). = A X(t) + B U(t) (2-2-Ia)

Y(t) = C X(t) (2-2-ib)

where X E Rn, U E Rm and Y E RP are state, control and

output vectors respectively, A, B and C are constant matrices of the

appropriate dimensions.

/i0

11.2.1. Notion and Criterion of Controllability

A state (Xo, to) is said to be "CONTROLLABLE" if a finite

time ti can be found that is greater than to, and an input U(t)

in the interval [to,tl] which converts the state into (xl,

tl). If all states of a system are controllable, the system (or

the pair (A,B) is said to be totally controllable. This leads to

10



a decomposition of the state vector into two subvectors equations

(2-2-1) which are expressed in the following form:

i i[iG A 1 A12

= .

Lx .Gj "22
I}[X G B 1

XING 0

For all systems under consideration, the following theorem gives a

necessary and adequate condition of controllability:

Theorem 2-2-I (FOS-72) (KAI-62)

The system (2-2-1) is controllable if and only if it is in

the equivalent form:

I) Kalman Criterion (KAL-62)

Rank Qg = Rank [B, AB, ..., An-1 B] = n (2-2-2)

2) Po_ov - Belevit - Hautus i_] Criterion

The scalar products <Wi, bj> are not zero for any j, as

bj is the jth column of B and Wi are the natural vectors to

the left of A*.

The Kalman criterion is not minimal and most often, it may be

verified whether the matrix:

_ -1 ]Qg = B, AB,..., A c B

*The natuFaT-_aXues to the-Te_ W ana to the right, rela_B to the
natural value s are given by:

(sI-A) V = O

WT (sI-A)= O

11



is of the same rank as n whereas _c is less than n. Vc is called

CONTROLLABLE INDEX'. The PBH criterion is in practice simpler to

use, since it may be expressed in the following form: the system

(2-I) is controllable if and only if:

11

Rank (sI-A, B) = n for any s E o (A) (2-2-3)

II.2.2. Notion Criterion of Observability

A state (Xo, to) is said to be "OBSERVABLE" if the

initial state xo may be identified based on knowledge of the

output Y(t) and input U(t) on an interval [to,t1]. As with

controllability, the system is said to be completely observable

if a]l of its states are observable. In the sense of

observability, the state vector may be divided into two

subvectors, one being observable: XO and the other

unobservable: XINO. It is shown that the state equations

(2-2-I) may be expressed in the form:

[ IF0 A_I 0

=

XINO LA21 A22

[Y] o]

X oXINO

I::.o]

.+ u

B'
(2-2-4)

In a dual manner, the necessary and adequate condition of

observability is given by the following theorem:

Theorem 2-2-2 (FOS-72) (KAI-80)

The system (2-2-1) is observable if and only if, in

equivalent form:

12



I) Kalman Criterion (KAL-62):

rank Qo = rank[cT, ATCT,...,(AT)"-I CT] = n (2-2-5)

2) PoRov - Beleviat - Hautus _I Criterion:

The scalar products <cj, vi> are not zero for any j,

cj being the C lines and vi the natural vectors to the right

of A.

As is the case for the controllability, if

rank QO = rank[ CT' ATCT, "', (AT)V°-1 C T] = n

is called nOBSERVABILITY INDEX'. The PBH criterion may also

take the following simple form: the system (2-2-I) is observable

if and only if:

Rank [SIcA]=n for any s E o (A) (2-2-6)

II.2.3. Canonical Structure of a System (KAL-62)

Based on the above and from an overall standpoint the state

vector may be divided into four components X1 to X4 so that:

n 1

XIE Rn2 = XG _ X O

X2£ Rn3 =.X G _ XIN 0

X3£ Rn4 XING _ XO

X4£R = XIN G _ XIN C

(controllable and unobservable states)

(controllable and observable states)

(incontrollable and unobservable states)

(incontrollable and observable states)

/13

with n : nl + n2 + n3 + n4, Kalman (KAL-62) showed that a

real, steady conversion matrix exists making it possible to

switch from model (2-2-1) to the model below.

The structure of the system thus demonstrated by (2-2-7) may

be illustrated by figure (2.1). Note that the block modes A22

are completely controllable and observable, and therefore verify

13
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Rank

Fs_-ABIL --nc o

INPUT OUTPUT

:::_i__j---

Fig 2.1 - Canonical Structure

of a Linear System

II.22.4. Origin of Uncontrollability and Unobservability

On the basis of an example consisting of several

single-entry single-output subsystems, (FOS-78f) shows that the

appearance of incontrollable and/or unobservable modes is the

result of a compensation (simplification) between a subsystem and

a zero of another, according to the correspondence:

Zero upstream = upstream pole

Upstream pole - downstream zero

uncontrollability

unobservability

14



11.2.5. Practical Importance of the Notions of Controllability

and Observability (FOS-78)

13

1) An uncontrollable mode is not connected to the input and

the feedback of this mode will change only as a function of its

dynamics and the initial condition assigned to it, independently

of the control.

2) If a mode is unstable, uncontrollable, but observable,

the output is unstable. The fact that it is uncontrollable

therefore excludes any possibility of stabilizing the system.

this case the problem is therefore not to search for a control

law, but to modify the structure of the system.

In

3) Let us assume that the system has a controllable, but

unobservable mode, and this mode is not connected to the output.

A stable output will be observed, but the instability internal to

the system will risk leading to the rupture of the system or to a

nonlinear operation (saturation) and in this case the nonlinear

model adopted is no longer valid.

4) On the practical level, a distinction must be made

between stable and unstable uncontrollable (unobservable) modes.

The exact compensation of a pole by a zero (or conversely) is

totally theoretical. When it is said that there is a pole/zero

compensation, actually a dipole is created. If this dipole is in

the left half plane (near the value -_), it will contribute to a

term of the form ce ,_ being the residue associated with the

pole (very low), and this term amy be disregarded. If the dipole

is in the right half plane, we will have an unstable plane as

small as c.

The results I, 2 and 3 may be extrapolated with an output of

the system (2-2-7), i.e. U = KY, the typical equation of the

system in a closed loop becoming:

15



det(slnl-All)'det(SIn2-A22-B2K2C2).det(SIn3-A33),det(Sln4-A44) = 0

This equation shows quite well that the uncontrollable and/or

unobservable modes cannot be displaced regardless of the value of

the K control applied. These modes shall be called "CENTRALIZED

FIXED MODES".

II.3 STABILIZATION AND PLACEMENT OF CENTRALIZED CONTROL POLES

The problem is presented as follows: given a supposedly

unstable system (2-2-1), find a control that stabilizes the

system, or that places the system modes in a specified region of

the complex plan. Wonham (WON-67) showed that if all states of

the system are measurable, then the system can be stabilized with

a static state feedback if and only if the uncontrollable modes

of the system (centralized fixed modes) are stable, and a system

pole placement may be achieved if it is totally controllable (no

centralized fixed modes).

In practice, unmeasurable states often exist (in particular

for a large system that has a large number of states). In this

case the system has to be controlled by an output feedback.

Brasch and Pearson (BRA-70) showed that the system can be

stabilized by a d_namic output feedback if and only if its

uncontrollable and/or unobservable modes are stable, and the pole

placement can be achieved if and only if the system is totally

controllable and observable (absence of centralized fixed modes).

The minimum order of the dynamic compensator required is: min (v -I,
g

o-1)' where Ug and O_o are the controllability and

observability indices respectively. It should be pointed out here

that for a general case the problem of stabilization or pole

placement by static output feedback is not totally resolved.

/14

II.4 STABILIZATION AND POLE PLACEMENT OF SYSTEMS UNDER STRUCTURAL

STRESS

This involves controlling a system by introducing stresses on

16



the structure of the control system. Two stress cases are to be

considered: C) a local control station only has local information

(states, outputs and possibly local external inputs). In this

case the control is "DECENTRALIZED" (figure 2.2.a). C) The
structural stresses are of any type, namely one local station may

have "other information" from other a subsystems in addition to

available local information, but all stations do not

simultaneously have information on all subsystems (as in the case
of a centralized control) (figure 2.2b).

p_

(a)

,£-,

,-. 7,;i¢,

(b)

Fig. 2.2 - Example of a system (N=3) under structural stress

a) decentralized - b) any type

II.4.1 - Problem of a Decentralized Control by Output Feedback

Let us consider a dynamic, continuous, linear, multivariable

system with N local control stations, described by:

N
0

X(t) = A X((t) + Z B.u.(t)
I 1 I i

(2-4-Ia)

Yi(t) = C. X(t) i=l,...,N (2-4-Ib)
l

m

X(t) E Rn is the state, ui(t)E R i and Yi(t) E Rpi are the controls

and local outputs of the i-th subsystem. A, B i and Ci are

the constant matrices of the appropriate dimensions.

17



Overall, the system is expressed:

O

X(t) = A X(t) + B U(t)

Y(t) = C X(t)

(2-2-2a)

(2-2-2b)

N

with U(t) E Rm. Y(t) 6 RP, where _ m
' 1i=1 i

and
N

P = _ Pi'' and
i=1

B = [BI,..., BN]

CT= [cT,..., CT]

In the frequency range, the input-output ratio using the

system transfer matrix is described by:

"Yl(S) "_

' I
' I
• I _-

YN (s)

"Gll(S) .......... GiN(S)"

GNI(S) .......... GNN(S)

il(s>l

N(S)J

(2-4-3)

i.e. globally:

Y(s) = G(s) U(s) (2-2-4)

The problem consists of finding a decentralized control (N

local controls) using output feedback in order to stabilize the

overall system. These controls are generated by the following

local dynamic compensators:

O

z(t) = S.i z.i + R.i Yi (t)

(2-4-5)

ui(t)= Qi z i + K i Yi (t) + e.(t) i=l . ,N

m.

with zi(t)_ R_ & ei(t)_ R z state and external input of the i-th

local control system. Si, Ri, Qi and K i are the

real, constant matrices with the appropriate dimensions.

18
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The control system is globally expressed as follows:
0

Z(t) : S Z(t) + R Y(t) (2-4-6)

U(t) = Q Z(t) + K Y(t) + E(t)

with S, R, Q and K block-diagonal matrices with the appropriate

dimensions:

S- block diag. (Si)

R = block diag. (Ri)

Q - block diag. (Qi)

K - block diag. (Ki)

and E(t) E Rm the external control vector with ET =

[cI,...,cl].

When the control (2-4-6) is applied to the system (2-4-2),

the closed loop system is expressed by:

I-H:[ E (2-4-7)

The set of local controls should be selected so that the system

(2-4-7) is asympotically stable, i.e. all of these poles are in

the left half of the complex plan.

II.4.2. Notion of Decentralized Fixed Modes

Owing to the structural stresses, satisfaction of centralized

stabilization condition of the system does not lead to a

decentralized stabilization of it. Based on an example, Wang

(WAN-78b) showed for the case of a state feedback that even if the
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system (A,B) and each subsystem (Aii , Bii ) are completely
controllable and observable (absence of centralized fixed modes)
it may be impossible to stabilize the system using a decentralized
control. This impossibility is due to the existence of

DECENTRALIZEDFIXED MODES. Such a notion was introduced by Wang

and Davison (WAN-73b).

Definition 2-4-I (WAN-73b) Decentralized Fixed Polynomial

Let us consider the system (2-4-2) and the set of diagonal
control block matrices defined as follows:

Kd = {K/K = block.diag (Ki) , K i _ RmixPi, i=l, ... ,N } (2-4-8)

/17

The highest common divider of typical polynomials for

(A+BKC), for K E Kd is defined as a decentralized fixed

polynomial of the system with respect to the set of control

matrices Kd, and is notated:

(s; C, A, B, Kd) = p.g.c.d. {det(sI-A-BKC)} (2-4-9)

K E Kd

Definition 2-4-2 (WAN-73b) Decentralized Fixed Modes

For the system (C,A,B) and the set Kd of block diagonal

matrices, the set of fixed system modes with respect to Kd is

defined by:

A (C,A,B,K d) = _ a (A+BKC) i

KE K d ]

(2-4-I0a)

where o(M): set of natural values of M. Similarly, the

decentralized fixed modes may be defined as the roots of the

decentralized fixed polynomials, namely:
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(C,A,B,Kd) = {s/s E C and _(si,C,A,B,Kd) = 0} (2-4-10b)

Since the set Kd contains all block-diagonal matrices, it
therefore contains the zero matrix and therefore:

A (C,A,B,Kd) C o(A) (2-4-11)

The relationships (2-4-10) and (2-4-11) may be illustrated by

figure 2.3.

A (C,A,B,Kd)

Fig. 2.3

Let us notate the centralized fixed modes by

A c(C,A,B, RmXp) iand the fixed modes due to decentralization by

Ad;the fixed modes of a system with respect to a matrix K E Kd

are therefore A=A +A Consequently we will consider that thec d'

system (C,A,B) is completely controllable and ;therefore

observable, A c = {_; and the fixed modes will not be only due to

decentralization, i.e. the fixed modes will be only related to the

control structure. _

II.4.3 Stabilization and Pole Placement OF DECENTRALIZED SYSTEMS /18

Many researchers have studied the problem of stabilization
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and pole placement of decentralized systems in a deterministic

formulation (AOK-72, WAN-73b, COR-76a and 76b, KOB-78 and 82,

FES-79 and 80, POT-79, KUL-82, etc...), but the distinguishing
results of all of these studies showing the significance of

decentralized fixed modes are essentially due to Wang and Davison

(WAN-73b) and Corfmat and Mores (COR-76a and 76b).

II.4.3a. Results by Wang and Davison (WAN-73b)

The results in a closed loop are expressed by the following
theorem:

Theorem 2-4-I (WAN-73b)

i) the closed loop system as defined in (2-4-7) is

stabilizable by appropriately selecting the matrices Ri, Si,

Qi and Ki, i=l,...,N if and only if A (C,A,B,K_)CC-, where C-
is the left half of the complex plan and Kd the set defined in

(2-4-8).

ii) All of the poles of the closed loop system defined in

(2-4-7) may be placed in Cg if and only if A(G,A,B,K d) (: C.
g

where Cg is a symmetrical area of the complex plan.

Corollary 2-4-1

An arbitrary pole placement of the system may be achieved if

and only if A(C,A,B,K d) ={ _}i.

Remark: The notion of decentralized fixed modes is therefore a

generalization of uncontrollable and/or unobservable fixed modes

in a centralized control

Example 2-4-1

Given the system below:
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Example 2-4-1

-2
O

X=

Yl = "i

Y2 =[0

1 O]X

0 1Ix

u 1 + u2

Is it possible to control this system with a completely

decentralized output feedback? Given U = KY = diag (kl,k2).Y;

the typical polynomial of the closed loop system is:

det(sI-A-BKC) = (s+2-kl) (s-a) (s+l-k2)

/19

and according to the definitions (2-4-i) and (2-4-2) the system

has a decentralized fixed mode at s = a and the fixed polynomial

is (s-a). According to the theorem (2-4-1), if a < O, the system

is stabilizable by decentralized feedback, but if a > 0 the system

is not.

If the matrix A of the system becomes:

A

-2 a
1 -1

the typical closed loop polynomial is expressed:

det(sl-A-BKC) = (s+2-kl) [(s-a) (s+1-k2) - k2]

and the system does not have fixed modes, its poles may therefore

be arbitrarily placed in the complex plan.
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II.4.3b. Results by Corfmat and Mores (COR-76)

Corfmat and Mores (COR-76a and 76b) used a geometrical
approach (WON-74) to handle the problem and obtained more

constructive results based on the question: Do local static
controls exist in the form:

ui = Ki Yi + ei i=l,...,N

which, when applied to the system (2-4-1), make the closed loop

system:

° i NX(t) : (A + B.K.C.) X(t) + Z B.e.

j =i ] ] ] i =i z I

Yi(t) = C.l X(t) i=l,...,N

controllable and observable from a single station (i.e. j) from

which the centralized control algorithms (stabilization or pole

placement) may be used to calculate a dynamic control of type

(2-4-6)? Figure 2.4 gives an illustration of this step on a

system with three control stations, controllable and observable by

the third of these.

To have a clearer understanding of these results, a few

definitions are necessary:

Definition 2-4-3 (COR-76b) Complementary Subsystem

(Cfl,A,B_) is a complementary subsystem of the system

(C,A,B) defined in (2-4-2) if _ and fl are two natural subsystems,

not void of the set N where N = {1,...,N} = =_ U B

with N = {I,...,N} =

= { 1,...,i_

8 = {ik+l ..... kN}
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Fig. 2.4
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and where

/21

B =[Bi_ 1 .... ' Bik ]

r_c C B i.k+i

For a system with N control stations, there are 2N _ 2

complementary subsystems. For example, if N = 3, we have the

following 6 complementary subsystems: (C2C3,A,BI) , (CIC3,A, B2) ,

(CIC2,A, B3), (C3,A,BIB2), (C2,A,BIB3) & (CI,A,B2B3)."..._

Definition 2-4-4 (COR-76b) Highly Connected System

A (C,A,B) system with N subsystems is said to be highly

connected if:

G8 = C 8 (sI-A) -1 B e _ O U_

where GB_ represents the transfer matrix of a complementary

subsystem (CB,A,B _ ); G8s _ o implies that the output of the

aggregated station B is influenced by the control of the

aggregated station _..

Definition 2-4-5 (COR-76b) "Remnant Polynomial"

The "remnant polynomial" of a system (C,A,B) is described by

f if r_t

R(C,A,B) =
t

r. (s) if r < t
i=r+l i

where r is the rank of the rational transfer matrix C(sI-A)-I B,

and T1,...,Tt(s) are transmission polynomials of (C,A,B)

(MOR-73) (Appendix I). In other words (ROS-70) the "remnant
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polynomial" is the product of n (system order) first invariant

polynomials of the matrix Fs-IAc J

Definition 2-4-6 (COR-76) Complete System

i) A system (C,A,B), with a single control (N=I), is complete

if its transfer function is not zero and its "remnant polynomial"

is equal to 1, i.e.: C (sI-A) -I B I 0 and R (C,A,B) = 1.

ii) A system (C,A,B), with N control stations, is complete if

all of this complementary subsystem are complete, i.e. the system

is highly connected and R(CB,A,B_,) = 1 _

Theorem 2-4-2 (COR-76b)

If the system (C,A,B) defined in (2-4-2) is controllable,

observable and highly connected, then with a decentralized system:

i) the system may be stabilized if and only if the "remnant

polynomials" of all complementary subsystems are stable.

ii) all poles of the system may be assigned if and only if

the system is full.

Theorem 2-4-3 (COR-76b)

/22

If the system (C,A,B) defined in (2-4-2) is controllable and

observable, then with a decentralized control:

i) the system may be stabilized if and only if the poles of

the system not belonging to the pole union of highly connected

systems are stable and stabilization is possible for each highly

connected subsystem.

ii) all poles of the system may be placed if and only if the
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sum of the dimensions of highly connected subsystems is equal to
the dimension of the system and the poles may be placed for each
highly connected subsystem.

Corfmat and Morse (COR-76) gave an explicit solution to the

problem of stabilization and decentralized pole placement. Their

analysis is attractive, but from a practical standpoint, their
approach has a few drawbacks:

a) even if all modes of a complex system are controllable and
observable by a single station, there may be a few modes that are

not very controllable and observable by this station, making it

necessary for large, but not very practical gains.

b) it is not certain that all available degrees of freedom
are used to design the control.

c) "reducing" the complexity of the overall system into a
single station is generally not desirable.

Despite these drawbacks, other researchers have become

interested in the problem as formulate by Corfmat and Morse

(COR-76). For example Kobayashi et al (KOB-78), Potter et al

(POT-79), and Fessas (FES-79,80,82a and 82b). Kobayashi et al
(KOB-78) used a local control varying in time, Potter et al

(POT-79) presented for a system with 2 control stations, the
findings of Corfmat and Mores (COR-76) in the form of a rating

test of the system matrix. Such a result is very important,

because it is directly related (in its general form) to the fixed

modes characterization (AND-81a). Finally, Fessas (FES-79, 80,

82a and 82b) use polynomial matrices ("matrice fraction

description" (ROS-70) (WOL-74) and comes to algebraically

equivalent results (FES-81) to those of Corfmat and Morse
(COR-76b).

Let us note that the findings of Corfmat and Morse (COR-76b)
reveal the notion of transmission zero (Appendix 1) through the
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"remnant polynomial".

"remnant polynomial" will have one also. The system will

therefore not be stabilizable by a decentralized control. In

In the next chapter we will show how the findings by Wang and

Davison (WAN-73b) coincide with those of Corfmat and Morse

(COR-76).

If a subsystem has a transmission zero, the

/23

Example 2-4-2 (KAT-81)

Given a globally controllable and observable system,

described by:

ii 1
o 0 0 0
X=

0 I

0 0

0

1
X+

O

2

I 0 0 01
Yl = 0 1 0 0

0 0 1 0

[oo i o]

u I + u 2

The transfer function of the system is:

[ 1GlllG12

(s-l) -1

O

(s-l) -1

I(s-l) -1 I

0

The system has two complementary subsystems verifying:

(Cl,A,b 2) --_ G12(s) = CI(SI-A)-I B2 # 0

(C2,A,b 1) ---4,-G21(s) = C2(sI-A)-1 BI _ 0
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The system is therefore highly connected.

The "remnant polynomials" of the complementary subsystems

are:

R(CI'A'B2) = R(C2,A,B 1) = I i

the system is therefore complete, and may be rendered controllable

and observable by the 1st station by applying a static control to

the second one. The system is therefore stabilizable by a

decentralized control, and even its poles may be arbitrarily

placed in the complex plan (complete system and "remnant

polynomials" equal to I).

II.4.4. Special Case of Interconnected Systems

The special feature of this system class is that subsystems

are generally only interconnected by inputs and outputs (figure

2.5).

u
I

el +

u N

e N

+

/24

\

m ,ram"

f

/

Fig. 2.5

30



The equation for the state of such a system is:

0

Xi(t) = Ai Xi(t) + Bi ui(t)

Y._(t) = C.I Xi(t) i=l,...,N

(2-4-12a)

(2-4-12b)

The interconnections are described by the following system:

N
0

z--Mz+ Z Lj yj
j=l

N

u i = N.Z + Z Kij yj + e i
I j=l

(2-4-13a)

i=1,... ,N (2-4-13b)

n. m. Pi : m.

where xiE R' ui_ R i yi _ R , Z _ Rq iand eiG R I. A, Bi,Ci, Z, Lj, Ni Kij

are constant matrices of the appropriate dimensions. Let us note

that if q =m O, we obtain the following special case of static

interconnections:

ui(t) = [ Kij yj(t) + ei(t )
j I

(2-4-14)

The problem of stabilizing interconnected systems (2-2-12) by

a dynamic system (2-4-13) (or by the special cases of (2-4-13),

such as (2-4-14)), by local dynamic compensators of type (2-4-6),

is studied by many researchers (SEZ-78; 80, SAE-79, DEC-81,

DAV-79; 83 and 85b, RAM-82, GUA-83, LIN-84, AND-84, MIN-85,

etc...). Linnemann (LIN-84) considered the general

interconnection case (2-4-13) and gives the following adequate

condition:

Theorem 2-4-4 (LIN-84)

An adequate condition for the existence of dynamic

decentralized controls by type (2-4-6) output feedback which

stabilize the (2-4-12) systems interconnected by a dynamic system

(2-4-13) is:

/25

1) the local system s(2-2-12) are stabilizable and
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detectable, i.e.:

[sI-Ail=

Rank (sI-Ai Bi) = ni and Rank [ ci J

for all unstable modes Ai (s E C+)

n,

I
i:1,...,N

2) the interconnection system (2-4-13) is stable.

Let us note that condition I may be replaced by a stronger

condition of local controllability and observability. For the

special case of type (2-2-14) static interconnections, the above

theorem takes the following simple form:

Corollary 2-4-2

The systems (2-4-12) (2-2-14) are stabilizable by dynamic

output feedbacks if the local system (2-4-12) are stabilizable by

dynamic output feedbacks.

Saeks (SAE-79) comes to the same result showing that the set

of decentralized fixed modes is identical to the set of

centralized fixed modes, namely A= ^d = Ac "I Consequently, the

decentralized stabilization conditions (or pole placement) of the

system are the same as for a centralized stabilization (absence of

uncontrollable and/or unobservable modes) and the decentralized

stabilization criterion may be reduced to the controllability and

to the observability of local subsystems, since:

N

Ac = A(C'A'B'Rmxp) = U A(Ci,A i,B i)
i=l

II.4.5. General Case of Systems Under Any Structural Stress

The notion of fixed modes may be generalized to any structural

stresses (SEZ-8]a, LIN-83, PIC-84, SIL-82b REI-84a, etc.) (not ne-

cessarily decentralized stresses). In this case the control of a

station i may depend on information from other suSystems (fig. 2.2b).
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Let us reformulate the problem by taking a look at system

(2-4-I); the structural stress may be described in a convenient

manner using a binary matrix (F with dimension mxp and element

fij), such that fij = 1 if and only if the bond between

the input of the j-th subsystem and the output of the i-th

subsystem

is permitted. Let us define for each input u i the set of

indices Ji with:

/26

Ji :{ J if fi : 11, i:l,...,m, j:l,...,p} (2-4-15)

Therefore, the dynamic compensator defined in (2-4-5) becomes:

0

zi(t) : Si zi(t) + I Rij yj(t) ,i

JEJi I
(2-_-16)

ui(t) = Qi zi(t) + _" Kij YJ + ei(t)

J EJ i

The problem of stabilization consists of finding N controls of

type (2-4-16) so that the closed loop system is asymptotically

stable. To derive the stabilization conditions of the system, let

us define the following set of constant control matrices:

KF = {K/K E Rmxp, Kij = 0 if fij = O} (2-6-17)

By analogy with the case of a conventional decentralized

control, the complementary subsystem of system (2-4-1) subjected to

a type (2-4-17) type control is defined by:

Definition 2-4-7

(Cj, A, BI) is a complementary subsystem of system

(C,A,B) defined in (2-4-1) if I is an arbitrary subsystem of M

indices with
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M: {1,...,m} (m = number of inputs)

W_I ={ 11,... , i } r=l,...,m-1r

J = U Ji = {Jl''"'Jq }
iE M-I

BI Bi I r

= LJI'cT 1 cTIT (2-4-18)
lCj

'"" j_

Let us note that the definition of complementary subsystems

for the case of a decentralized control (definition 2-4-3) is a

special case of the above definition where subsets I and j are

disjoined.

With this formulation, Sezer and Siljak (SEK-81a, SIL-82b)

generalize the fixed mode definition (initially introduced for the

Wang and Davison's decentralized control (WAN-73b)) for any

structural stresses, as follows:

Definition 2-4-8

The fixed modes of the (2-4-1) system relative to the set of

controls KF defined in (2-4-17) are given by:

/27

AF (C,A,B,K F) = (_

KE K F

(_(A+BKC)

In (SEZ-81a) (SIL-82b), it is shown that the stabilization

and pole placement conditions in the present case remain the same

as for the decentralized case, provided that the set AF is

considered in place of A in Wang's and Davison's findings

(WAN-73b).

It is evident that if the set of matrices Kd, KF are

considered with Kd_K F C Kc, then: _ C A _ A C o
c F d i

34



figure (2.6) depicts the inclusion ratio relationship between the

different fixed mode sets according to the stress under

consideration.

Fig. 2.6

II.5 CONCLUSION

In this chapter, are are interested in the problems of

stabilization and pole placement using a dynamic control under

structural stress. Several algorithms found in literature

provide a solution to this problem (WAN-73b, SIL-78, SEZ-80,

MAH80, SIN-81, sin-83, AND-84, etc.}. However our goal here is

simply to state the necessary and sufficient conditions for the

existence of solutions. Let us note that with the exception of

special cases (KUL-82), the problem of decentralized stabilization

by static output feedback is not yet solved.

These results explicitly show the significance of the notion

of fixed modes. Stabilization is possible if and only if the

fixed modes are stable. Conversely, the existence of an unstable

mode makes stabilization impossible. In this case, it will be

necessary to change the control structure.
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According to the algebraic definition of fixed modes and

Wang's and Davison's results (WAN-73b), we clearly see that the

fixed modes are modes that remain invariant for any value or

nature (dynamic or static) of the control applied, because these

modes are related to the control structure only. For this reason,
in the following chapters, we will consider a static control alone /28

(without discussing the problem of decentralized observers) to

present methods of fixed mode characterization and to indicate the

possibilities of eliminating them or avoiding them if necessary.

CHAPTER llI- ALGEBRAIC CHARACTERIZATION OF FIXED MODES /29

III.1 INTRODUCTION

In this chapter, after showing the importance of fixed modes

in the previous chapter, we will discuss the methods of

characterizing these modes in the time and frequency ranges.

Let us recall that fixed modes are system modes that are

invariant to the control applied, and that the system class

considered is the class of dynamic, linear, continuous, invariant

in time, multivariable system with N control and observation

systems described in the time range by equations (2-4-i) or

globally by (2-4-2), and in the frequency range by (2-4-3) or

(2-4-4). These systems are assumed to be completely controllable

and observable. This makes it possible to consider only fixed

modes caused by structural stresses.

/30

We have seen (chapter II) that the control dynamics plays no

role in the existence of fixed modes. For this reason and to

simplify the analysis, we will consider only the control class due

to static output feedback (constant) in the overall form:

U(t) = K Y(t) + E(t) (3-1-1)
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with K E Kd (2-4-8) (case of a decentralized control), or
K E KF (2-4-17) (case of a general structural stress), the

vector E(t) representing the system inputs.

If the control (3-I-i) is applied to the system (2-4-2), the
closed loop system becomes:

0

X(t) = (A + BKC) X(t) + B E(t)

: D X(t) + B E(t)

(3-1-2)

where D = A + BKC is the closed loop dynamic matrix.

III.2 FIXED MODE DETECTION

Two methods are available for detecting fixed modes:

-using their definition, proposed by Davison (DAV-76a),

-using their sensitivity, one of our proposals.

III.2.1. Fixed Mode Calculation Using Their Definition

Using the fixed mode definition (def. 2-4-2), Davison

(DAV-76a) proposes the following algorithm.

Algorithm 3-2-I: (DAV-76a)

To find the fixed modes of system (2-4-2) with respect to the

decentralized control K d (2-4-8):

1) Calculate the natural values of A.

2) Arbitrarily select a matrix K E Kd (by pseudo-random

number generation).

3) Calculate the natural values of the closed loop matrix D =

A+BKC.

4) The fixed modes relative to Kd are, with a probability of

1, the common natural values of A and D.

5) If in doubt, arbitrarily select a new matrix K E Kd and go
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to 3, if not go to the end.

Remark: a corresponding FORTRAN program is given in (TIT-86)

EXAMPLE 3-2-1 (DAV-83)

/31

Given system (C,A,B) of (2-4-I) with three control stations

(N=3) described by:

i-Ii I1 0 , -2 ' 0

0 1 -3 0

By applying algorithm (3-1), for an arbitrary choice of K,

i.e. K = diag. (0.13, - 0.17, - 0.1), we derive the following

closed loop natural values:

o (D) = {- 0.01023258, - 2.1597674, -2.1, - 3}

it is clear that s = -3 is a fixed mode relative to K.

The algorithm (3-1) may be used to actually calculate fixed

modes of large systems [for example: steam generator of a ship,

system of order 119 with three control stations (DAV-78a)].

III.2.2 Fixed Modes Calculation Using Their Sensitivity

In this section, we propose a new method of characterizing

fixed modes under any structural stress. This method is based on

the notion of the sensitivity of natural values of the closed loop

system with parametric variations of the system.

Let us recall that the fixed modes are modes of the system

that are invariant with respect to the set of control matrices.

Let us redefine fixed modes in terms of mode sensitivity:
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Definition 3-2-I (TAR-84a)

The fixed modes of system (2-4-2) with respect to all control

matrices KF (2-4-17) are closed loop modes (3-I-2) that are

insensitive to variations in non zero elements of the control

matrix.

If the elements of a real matrix D change the value, the

coefficients of its typical polynomial change as well. Therefore,

the natural values also change position in the complex plan. Iif

matrix D changes from dD, the variation of a simple natural value

Sr, due to variation dD, is given by the following formula by

Faddeev and Faddeeva (FAD-63):

d sr = W_. dD. Vr

where Vr and Wr are the respectively the natural values

normalized to the right and to the left of matrix D and

corresponding to Sr, i.e.:

(D - s I) V : 0 (3-2-2)
r r

W T (D - s I) = 0 (3-2-3)
r r

WT V = I (3-2-4)
r r

Based on relationship (3-2-I), it is shown (MOR-66) that:

Pl otting_iQ£Sr)_dD
d s = - (3-2-5)

r Plotting {Q(s r}

where Q(s) is the associated matrix of (sI-D), i.e. Q(s) = adj

(sI-D). Relationship (3-2-5) is used to calculate the variation

d Sr of a simple natural value corresponding to dD. Morgan

(MOR-66) proposes an algorithm for calculating d Sr directly

from relationship (3-2-5), Rosenbrock (ROS-65b) replaces Q(s) by

its explicit expression available in (ROS-65a) and (GAM-66) and

derives the following formula:
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plot {< n (D-siI) }.dD )
i(i_r)

d s =
r (3-2-6)

(Sr-S t )
i(i_r)

Rather than calculating the variation d Sr, the sensitivity

of a natural value may be determined by calculating its gradient

with respect to the variations of the elements dij of matrix

D. Let us derive equation (3-2-2) with respect to dij

(Lancaster (LAN-646) showed that for a simple natural value Sr

the associated natural vectors Vr and Wr are continuous in

dij); this gives us:

ds dV

( dD r r- _ I) v + (D - s I) = 0
r r

d(dlj) d(dlj) d(dlj)

by premultiplying by wT and considering (3-2-3) and (3-2-4) we

obtain:

d s

_= wT dDr d(_j) Vr
(3-2-7)

Let us remember that d is the closed loop matrix:

D = A + BKC = A + Z b i k i cj
i,j J

(3-2-8)

where bi and cj are respectively the i-th column of B and the

j-th line of C. Since we are assuming that the variation of Sr

depends only on the variations of the elements kij, then (3-2-7)

is expressed:

r W T B D
_-- _ V

@ kij @kij r

relationship (3-2-8) gives:
BD = b i

C ,

_k.. ]
i]

Finally, we obtain:

/33

_s

r W T b i= c. V
(3-2-9)
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If the control matrix undergoes a given structural stress,
@s

the elements _ are zero for kij = O. Therefore, the

sensitivity matrix SKr, with respect to a control under

structural stress, which has a simple natural value sr of the

closed loop matrix, is given by:

with

sK IskiIIr j i=i, ... ,m

j=l,...,p

wTb i c. Vf

=J j r
sk.

lj I 0 si kij = 0

(3-2-10)

Proposition 3-2-1 (TAR84a)

Since system (3-1-2) with distinct modes, and the set of

control matrices KF (2-4-17), then sr is a fixed mode of the

system if and only if the sensitivity matrix SKr relative to

KF, given in (3-2-10), is identically zero, or in an equivalent

manner, if and only if:

with

S = Tr{ n (D-s.I) • dD} = 0
r i(i_r) z (3-2-11)

D = A + BKC, K _ KF,

dD = B. dK. C , dK (K F

Knowing that, for a simple natural value Sr, we have:

Tr Q(Sr) = E (s # 0
i(i_r) r - sl)

then the demonstration of proposition 3-2-i is direct according to

definition (3-2-1) and relationships (3-2-6) and (3-2-10).
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Using this proposition 3-2-1, we have the following algorithm
for calculating fixed modes:

Algorithm 3-2-2 (TAR-84A)

To calculate the fixed modes of a system (that has simple

modes) relative to the control set KF:

1) Arbitrarily calculate a matrix K E KF so that the

modes of the closed loop system o(D) = o(A÷BKC) are simple.
2) r = i.

3) Calculate for Sr E o(D) the sensitivity matrix SKr

(3-2-10)

4) If SKr is identically zero, then Sr is a fixed mode.

5) If r < n perform r = r+l and go to 3.

6) End.

Remark: A corresponding FORTRANprogram is given in (TIT-86)

Example 3-2-2

Let us consider a globally controllable and observable system
that has two control and observation systems described by:

x: I x+
o

Yl =[o

Y2 =[I

o I] x

0 O] X

u I + u2

Let us apply an arbitrarily selected decentralized control,

i.e.:

K = diag. (kl, k2) diag. (1,5)
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Table (3.1) gives the results of applying algorithm (3-2-2)
to this example.

Table (3.1)

$
r

in B.F.

- 2,OOOOOO

3,OOOOOO

1,000000

SK = ._/.r
r

_K

"r- 0, 7645 0

0 - O, 1529
, F

m

1,088 0 1

J. 0 0,2177

- 0,4953.10-15 o 7]0 - 0,3271.10 --1

S =ds
r r

for dK = K

- 29, 999999

I_),999999

0,666138.10 -14

10-14Therefore for an accuracy • s = I is a fixed mode.

The algorithm was used to actually calculate the fixed modes

of large systems [Ex: steam generator of a ship (chapter IV)].

It is difficult to generalize this approach to multiple mode

systems. In effect, the variations of a multiple natural value

Sr of order q of a real matrix D, due to variations of elements

dij of the matrix, are given by (PAR-74):

{ki 1 [dk-1_.[lq!{dq-1 [Tr Q(S)]s=Sr }" d Sr = Tr I-_-., Q(S)]s= s . dD}
r

(3-2-12)

where Q(s) = Adj(sI-D) which is an algebraic equation of order q.

Therefore, generally speaking, a multiple natural value sr of

multiplicity q, gives rise (after disturbance dD) to q simple

natural values: Sr +(dsr)l,..., Sr+(dsr)i,...,sr+

(d Sr)q, where (d Sr)i i=i,..., q are the solutions of

equation (3-2-12). Consequently, to have a fixed mode of order q

we will have q conditions to satisfy, namely:

/35
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(d st) i = 0 i=l,...,q

and relationship (3-1-12) therefore gives:

'[ I]Sr = Tr { _ dk-I [adj(sI-D) .dD } = O (3-2-13)
k=l s=s

r

This expression is not of interest for calculating multiple

fixed modes because it requires an analytical calculation of the

associated matrix of (sI-D) and of its variations of order 1 to

(q-l) due to variations of elements kij of K. Rather than

calculating the variations (equation 3-2-13), the sensitivities of

the multiple natural value (order q) of matrix D can be calculated

by calculating the gradients of this natural value width respect

to the elements kij of K; Lancaster (LAN-64) gives the following

theorem:

Theorem 3-2-1 (LAN-64)

Let s be a multiple natural value of the real matrix D(R);

where R is a parameter. Let us assume that the matrices of of the

right Vq and left Wq natural vectors are selected so that Wq

Vq = I. Therefore the q Ist derivatives of s with respect to R

are the natural values of matrix Wq D* Vq, where D* is the 1st

non zero derivative of matrix D with respect to R.

If we use the closed loop matrix for D and the elements kij

of matrix K for R, we characterize the multiple fixed modes by:

Proposition 3-2-2

Given system (3-1-2) and the set of control matrices KF,

then s is a multiple fixed mode of order q of the system relative

to KF if and only if the natural values of matrices wT bi

kij __ WTq and v
are all zero,

CjVq, i,j such that K =II II _, q

* The conditions for the existence of matrices Wq and Vq are
given in (LAN-64).
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are the left and right natural vector matrices of D corresponding

to s and selected so that wT . v = I.] /36
q q

The demonstration of this proposal is direct according to

theorem (3-2-i) and definition (3-2-I), since:

_D _(A + i!J bl klj cj) = bl cj _ 0
= Bklj

To use of this proposal to test whether s is a multiple fixed

mode of order it is necessary to search for the matrices of the

natural vectors Wq and Vq, and to calculate the natural values

of nk matrices of order q (i _ nk _ mxp, nk is the number of

non zero elements of matrix K E KF). This requires a long

computer time and makes this method impractical.

III.2.3 Remarks

The two algorithms presented in this section are simple to

use, and are generalizable for any control structure. They may

also be used to calculate the centralized fixed modes

(uncontrollable and/or unobservable modes). The only problem of

using these algorithms on computer is to determine the real zero

to calculate the sensitivity, and to decide when two natural

values are equal for the Davison algorithm (problem of accuracy).

Davison et al (DAV78-b) show that if a natural closed loop value s

remains very similar to an open loop value, the transfer function

calculated by considering that s is a fixed mode is a good approx-

imation of the transfer system.

The two approaches cannot be used to have a physical

interpretation of fixed modes. However, by calculating the fixed

modes by sensitivity, as we will see in chapter IV, it is possible

to know the origin and therefore the nature of such a mode.
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III.3 ALGEBRAIC CHARACTERIZATION OF FIXED MODES IN THE TIME

RANGE

We will present the characteristics in the time range (state

space) by beginning with the oldest:

III.3.1. Characterization by Testing the Rank of a Matrix

Anderson and Clements (AND-81) give the following theorem:

Theorem 3-3-1 (AND-81a)

s is a decentralized fixed mode of system (2-4-I) if and only

if at least one complementary subsystem exists (CB,A, Ba) i (def.

2-4-3) so that:

37.

IsIAiirank. < n [

kcs

It is evident that only the natural values of a should be

tested. Theorem (3-3-1) is generalizable for any control

structure. To calculate centralized fixed modes, it is simply

(WIL-85) necessary to consider that sets and B are empty. For

the case of any structural stress Pichai et al (PIC-84) proposed

the following theorem:

/37

Theorem 3-3-2 (PIC-84)

s is a fixed mode of system (2-4-1) relative to KF (defined

in 2-4-17) if a complementary subsystem exists (CJ,A,Bi) (def.

2-4-7) so that:

F
ran}E LCj <_
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This characterization is very interesting because it can be

used to interpret the mechanism by which fixed modes appear in a
system under any structural stress that is globally controllable

and observable: one fixed mode is simultaneously uncontrollable by

the set of (or I) stations and unobservable by the set of B (or
j) stations. Moreover, by comparing the definition of

transmission zeros of a system (see Appendix 1) with the test of

theorems (3-3-I) or (3-3-2), it may be concluded that a ne_es_az__
condition for s to be a fixed mode is that s must be a

transmission zero of at least one complementary subsystem.

In this characterization it is necessary to calculate the

rank of a generally complex matrix 2N-2 times, which is

numerically not a well presented problem. To overcome this

drawback and therefore to reduce the computer time required, Petel
and Misra (PET-84) developed (for systems with an A matrix in

Hessenberg's higher form (*)) a numerically equivalent condition

to the rank test of theorem (3-3-1), according to which the fixed

modes are transmission zeros of certain transfer functions, and

therefore apply their computer algorithm of transmissions zeros

(proposed in PET-84). For more details the reader is referred to
(PET-84). Let us note that Petel and Misra's result mentioned

above may be considered an extension of Davison and Ozguner's

result (DAV-83) for diagonal systems (see III.3.4).

(*) For example Hessenberg's higher form for a system of order 4
is:

A [11a12a13a021 a22 a14 a241

a3 2 a33 a341 b =o
0 a43 a44] b4
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Example 3-3-1 /38

Let us consider the linear system shown below, with 3a

control and observation systems:

"O O O O 1_

O 3 O O O
O

X=O O b 1 O

O O O a O

1 O O O O

yl=[O O O I

[I O O OY2 =

y3=FOu 1 1 O

° ,

1

O

X + O

O

0

o]x

o]x

o] x

• q

0

0

u + O
1

1

b O,

u 2 +

"ol
|

°I
°l
•OJ

u3

The typical polynomial of the system is:

@(s) = (s-b) (s-a) (s-3) (s2-cs-1)

For a decentralized control Kd = diag (k11,k22,k33),

the system has a fixed mode decentralized in s=b. In effect if

the 1st and 2nd stations are considered together, we have:

rank
"bI-Ac2C1B31oO

=4<5

If a=C, the system will have a fixed mode s=a, since:

I-A B1B_]
rank =4 < 5 'L

L c2 o

Note that s=b is a transmission zero of (C1,C2,A,b3).
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Recursive Characterization

Based on the above characterization, Davison and Ozguner

(DAV-83) show that the fixed mode existence test of a system with

N subsystems may be reduced to a fixed mode existence test of a

system with N-1 subsystems• Consequently, to detect the fixed

modes of a system with N control stations, it is simply necessary

to study the fixed mode characterization for the two stations•

Theorem 3-3-3 (DAV-83)

I) s is not a decentralized fixed mode of the system (2-4-1)

with N _ 3, if and only if s is not a fixed mode of any of the

system with N-1 subsystems shown below.

(I)

r r"

C 3

, CN

(2)

(N-2)

"CI ] "

i_CN_I

.. CN J

(N-I) .(

"3
P " C

1

CN_,' - ,A,[B I,...

CN_:
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II) s is not a decentralized fixed mode of the system

(2-4-I), with N=2, if and only if the three following conditions

are verified:

i) s is not a centralized fixed mode

ii) rank IsZ-A B01]LC2 _"

FsI-A B2]

iii) rank L cI oj _"

This characterization does not provide anything new. In

fact, it is the same as Andersin-Clements' previous

characterization for part II. For part I of the theorem, for a

system with N control stations we have to test the existence of

fixed modes for _! systems and therefore N! tests (some of which

are repeated). For example, for a system with N=4, we have to

test 12 systems using Davison and Ozbuner's approach. Conversely,

Anderson and Clement's approach is limited to an examination of

only 7 systems (there are therefore 5 redundancies). In general,

we have (N! - 2N - 2) repeated tests.

III.3.3.

IIl .3.3a.

Characterization by Common Transmission Zeros Between

Certain Subsystems

Characterization by Bu and jiang (HUj-84)

The system (2-4-1) is taken into consideration and the

integers below are defined for i=1,...,N:

/40

i

=o,_ = [ =. & =:_
mo i ] N

J _0

P

Po :o, 5_ : .Z pj & p :5.
] =0
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the system is expressed in the global form:

with

U =

O

X=AX+ BU

Y=CX

B =[Bi,B2,...,BN]=[bl,b2,...,bm]
or

C = CNj = ..... Cp9aoe,o _e . (_r

lull= u!2

with u.
l

,...,i_l +I

i I +I''''' C- i

u Yl YPi-I+

2 : y2

u mi J and Y = LyNj p with Yi-- [yPi

It is assumed that the integers qi and r.z are not negative

so that :

0 _qi 4 mi a..,--',ci

N

Z qi > 0
i=l

and

N

0 @ r i 4; Pi arid iZ=l ri • 0

iI

For qi > 0 and ri > 0, the integers fi,l' .... fi
,qi i

gi,1'"', gl,ril, are defined so that:

m._l+l • f. <. 4 m i
i 1,1 "" <fl,qi

"" • PiPi-i +I _ gi,l <" <gi,r i

The following matrices are also defined:

i

C. =

1

_i ' "'" _ B: ' B2"" '
,i i,2 i,qi

,c ....,c ---,- _= C ,
gi,1 gi,2 gi,r. ' .......

1

(3-3-i)

/41
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(If qi = 0 (ri = 0) matrix Bi,(_i) disappears in 3-3-I).

Given the set of control matrices, _d :

_d qixr"={K / K = bloc diag (Ki) , K i E R l i=I,...,N }

and the system:

(3-3-2)

Y=CX (3-3-3)

with B and C given by (3-3-I), and

U =

1

LY"J with Yi :

(if qi = o (z:._. = o) I

(3-3-3).

the input T. (output _) disappears in

Definition 3-3-1: (HUJ-84) Normal Subsystem

The system (C, A, B) defined in (3-3-3) under a decentralized

control K E Kd (3-3-2) is called a normal subsystem (C, A, B;

Kd) of system (C, A, B; Kd). The set of normal subsystems is

represented by SSN (C, A, B; Kd).

Definition 3-3-2: (HUJ-84) Nonsingular Normal Subsystem

If the dimensions of a normal subsystem are equal (i.e. if

qi = ri, i=l,...,N), then the subsystem is called a normal and

nonsingular subsystem. The set of normal and nonsingular
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subsystems is notated SSNN (C, A, B; Kd).

Theorem 3-3-4: (HUJ-84)

s is a decentralized fixed mode of system (2-4-I) relative to

Kd if and only if s is a fixed mode of all normal subystems of

the system relative to Kd, i.e.:

(C,A,B;Kd) = r_ A (_,A,B;Kd)

(_,A,B;K- d) E SSN(C,A,B;K d)

Theorem 3-3-5: (HUJ-84)

s is a decentralized fixed mode of the system (2-4-1) if and

only if s is a common transmission zero (ZT) of all normal and

nonsingular subsystems of the system, i.e.:

(C,A,B,K d) = _ ZT(_,A,B)

(_,A,B;Kd)E SSNN(C,A,B;K d)

These two theorems are more interesting in their negative

forms. Considering the definition of transmission zeros (see

Appendix 1), theorem 3-3-5 may be expressed:

Corollary 3-3-I (HUJ-84)

s o(A) is not a decentralized fixed mode of system (2-4-I) if

and only if a normal and nonsingular subsystem exists so that s is

not a transmission zero of this subsystem, i.e.:

/42

rank

I SI-A _] N
-- n + Z

C i=1

r°
1

III.3.3b. Tarokh's Characterization (TAR-84)

Let us consider a system with dimension n and m inputs and p
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outputs divided into N control stations, described by its overall
state equation:

o i

X = A X + B U U{ R m & X E R n i

Y=CX y_R p

Given C_ (q=l,...,qc), the set of
l

submatrices formed by i lines of matrix C, and B_

(r=l,...,. rs) the set of submatrices formed by j columns of

matrix B with

m! _ p!
r b _ and qc -

(m-i)! i! (p-i)! i!

It is said that a subsystem has dimension i if a has the same

number of inputs and outputs, i.e. i; it will be notated:

(C_, A, B_) i = 1, .... rain (re,p)

q = I,..., qc

r = 1,..., rb

Theorem (3-3-6) (TAR-84)

One necessary and adequate condition for s to be a fixed mode

relative to Kd is:

rank [ C_ OJ < n+i

°where (C , A, B_.) are subsYStems.

of the system corresponding to structurally nonsingular matrices

of K_.

Using the transmission zero definition (see Appendix 1) this

theorem is reformulated as follows:

/43
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Corollary 3-3-2

A necessary and adequate condition for s not be to a

decentralized fixed mode is that s is not a transmission zero of

any subsystem corresponding to a structurally nonsingular

submatrix of K_ g

The findings are exactly the same as those of Hu and jiang.

It is concluded that normal and nonsingular subsystems are

subsystems which correspond to nonsingular submatrices of K .

Note that if m=p, then a necessary condition for the system

to have a fixed mode in s is that s is a transmission zero of the

system.

It should be stressed that Hu's and Jiang's and Tarokh's

characterizations are based on the expansion of a typical

polynomial of the closed loop system in terms of K submatrices and

the transfer matrix. This expansion is used for the first time to

characterize the fixed modes in the frequency range by Seraji

(SER-82) and Vidasagar and Viswanadham (VID-82) (see next

section).

Example 3-3-2

Let us take example 3-3-1.

nonsingular matrices of K_ are:

The subsystems corresponding to

with dimension i=I (Cl,A,BI) , (C2,A,B2) and

(C3,A,B3)

with dimension i=2: (CIC2,A,BIB2) ,

(CI,C3,A,BIB3)

and (C2C3,A,B2B3)

with dimension i=3: (CIC2C3,A,BIB2B3)

it is easy to check whether s=b is a common transmission zero of
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all these subsystems, therefore s:b is a decentralized fixed mode

of the system. Note that the number of subsystems to be tested is

7, and that the number of complementary subsystems is 6. In this

case, Anderson's and Clement's characterization requires fewer

tests and therefore less calculations than that of Hu and Jiang or

Tarokh. In effect, the number of normal and nonsingular

subsystems depends on the number of nonzero elements of matrix K,
and the number of these subsystems decreases as matrix K becomes
hollower.

III.3.4. Special Case of Diagonal Systems

The following system, which has two control and observation

systems, is taken into consideration:

0

X =

o l
" ''''J "S-- ........

n

X ÷

[*: ]Yl = C1 _ _'1 X

uI + L_2J
u2

(3-3-4a)

/44

m. Pi
where u i E R I and Yi E R and s i E C, B_

(C*0081) and B_) (C_) are respectively lines

(columns) of dimension m I and m2 (Pl and p2 ). i.e.:

l,b2, ... ,bl I

C I J _LrtCt

2 2]ancl "B2 _" Ibm'b2"" "'bin2

(3-3-4b
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Davison and Ozguner (DAV-83), assuming that the s i

i=1,...,n, are distinct, give the following theorem:

Theorem 3-3-7 (DAV-83)

si is not a decentralized fixed mode of system (3-3-4) if

and only if:

i) sl is not a centralized fixed mode, i.e.
(BIB 2) _ 0 & _ 0

ii) condition B_ = 0 and C_ = 0 and

sI is a transmission zero of:

C r " • b_i' '" "" "'S ' l

V i £ {1,2, .... mq} /

is not verified for q = 1,2 and r = 1,2 and q#r.

This theorem is easily generalizable, for a system with N:

control stations by using theorem (3-3-3) (see PET-84).

Note that the controllability and observability of Sl,

for a centralized control, depends only on BI,

B_, C_ and are independent of matrices

BI, B2, C2 and C2 and of the natural

values Sl,...,s n. In the case of a decentralized

control, this independence is no longer assured.

III.3.5. Special Case of Interconnected Systems /45

The systems under consideration in this section are systems

made up of systems that are interconnected statically and

described by:
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o N

X. =A.. X. + Z
1 ii l

j=1

Y. =C. X.
1 1 1

Aij ×j + Bo ut i

(3-3-5)

where X. 6 Rni u 6 Rmi and
pi I ' i

y 6 R , matrices Aij being constant _atrices of the appro-

priate dimensions.

III.3.5a Characterization with Stress on the Interconnections

For the interconnection class expressed:

Aij _ Lij Kij Mij i,j=l,...,N

where the matrices Kij are interconnection gains and

Lij , Mij are arbitrary matrices, Davison (DAV-76b)

gives the following theorem:

(3-3-6)

Theorem 3-3-8 (DAV-76b)

Since system (3-3-5) is controllable and locally observable

(i.e. systems (Ci, Aii , Bi) i=1,1..., N are

controllable and observable) then system (3-3-5) (3-3-6) does not

have fixed modes for virtually all interconnections Kij

i,j=11,...,N and ilj. (Namely that the nonzero gain class

Kij for which (3-3-5) has fixed modes is void, i.e. reduced

to a general hypersurface of the space for parameters with nonzero

elements of Kij (DAV-76b).

The most interesting result is given for the interconnection

class in the form:

Aij = B i Kij Cj i,j=l,...,N and i_j (3-3-7)
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by Saeks (SAE-79) and Davison (DAV-79)

Theorem 3-3-9

A necessary and adequate condition for system (3-3-5) and

(3-3-7) not to have fixed modes is that the local subystems are

controllable and observable, i.e (Ci, Aii , Bi)

i=1,..., controllable and observable N.

Saeks (SAE-79) proposes the result below for this system

class, showing that decentralized fixed modes are centralized fixed

modes, given by the union of uncontrollable and/or unobservable

modes of each subsystem:

Theorem 3-3-10 (SAE-79)

The fixed modes of system (3-3-5) and (3-3-7) are given by:

N

A(C,A,B;K d) = Ac(C,A,B_ Rmxp) = U A(Ci'Aii'Bi ) '
i=l

/46

Interesting results are found in (DAV-83) for a control by

decentralized state feedback (Ci=I), for this system class.

III.3.5b. Characterization Using Block Diagonally Dominant

Matrices (ARM-8Z)

_ith

System (3-3-5) is globally considered in the form:

0

X=AX+BU

Y=CX

A :{A/j, i,j=1,...,N} G Rnxn

B = block.diaq. (BI,...,BN) (E Rnxm

C = block.cliaq. (Cl,...,CN) G Rpxn

n =_ ni
i

m=_.m i
J.

P=IPi

(3-3-8)
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If a decentralized control is applied in the following form:

ui = Kii Yi (3-3-9)

the closed loop dynamic matrix D becomes:

D = A+BKC=
A21

w

A12 ......... A1n

22

Anl ............... An

with
A

All = Aii+BiKiiCi

if the diagonal matrices Aii are not singular and if:

where IIAII

N

II Aii'-I II • Z II Aljll for i:l,...,N 'i
J=l
i#J

is a norm of matrix A, defined by:

I1^11:-,x Z l'i;I
i j

then matrix D is block diagonally dominant.

Theorem 3-3-11 (FEI-62)

If matrix D = A+BKC is block diagonally dominant, then it is

nonsingular.

Using theorem (3-3-11) Armentano and Singh (ARM-82)

characterize decentralized fixed modes by the following corollary:

Corollary 3-3-3 (ARM-82)

If s is a decentralized fixed mode of system (3-3-5), then:

II(R. z )_111-i- • IIA. II _ K. E Rmixpi
ti i i j=l tj zi (3-3-10)

is verified at least for i, i E {I,...,N}.

This characterization is interesting because it enables
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Armentano and Singh to develop a method for selecting a control

structure eliminating the fixed modes (ARM-82) (see Ch. VII). An

example for applying this method of characterization is given in

chapter VII.

III.3.6 Interpretation

Anderson's and Clements' characterization (AND-81a) reveals

that the existence of fixed modes of a system with N control

stations signifies the existence of fixed modes for a system with

two aggregated stations (control and observation). Davison's and

Ozguners' (DAV-83) recursive characterization coincides with

Anderson's and Clement's (AND-81a) characterization, but it also

proposes more systematically a description of all system partitions

(with repetition of certain partitions).

Let us consider a station partition into two aggregated

stations, and let us use the transmission zeros definition

(DAV-74)(DAV-74) (Appendix 1). Characterizations by Davison and

Ozguner (DAV-83) and by Anderson and Clements (AND-81a) show that

in order for s E o (IA) not to be a fixed mode of the system:

i) s must be controllable by station _(or B)

ii) s must be observable by station B (or _ )

iii) s must not be a transmission zero of one of the complementary

subsystems (CB,A,B_) and (C_,A,BB).

A very interesting interpretation of conditions i) and ii) is

that, for the partition under consideration, s is a fixed mode if

it is simultaneously uncontrollable by one of the aggregated

stations, either _, and unobservable by the other, or B. Figure

3.1 illustrated this interpretation.

According to this interpretation, a sufficient condition not

to have a fixed mode in s is that s is controllable and observable

by station j (i.e. j such as subsystem (Cj,A,Bj) is

controllable and observable) which may correspond to a corollary

/48
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STATION

$ --l--

YB

SYSTEM

STATION B

$ --2--

uB

1
Fig. 3.1 - Characterization of Fixed Mode s

Key: l-Uncontrollable; 2-Unobservable.

of theorem (3-3-4) by Hu and Jiang. In short, Anderson's and

Clement's characterization (AND-81a) may be derived from Hu's and

Jiang's results (HUj-8a4).

Condition iii) provides a second interesting interpretation of

fixed modes, namely: a necessary condition for a mode to be fixed

is that it is a transmission zero of at least one complementary

subsystem. Furthermore, results by Hu and jiang and by Tarokh show

that a fixed mode is a common transmission zero of normal and

nonsingular subsystems (subsystems corresponding to structurally

nonsingular submatrices of _), which is used to

reformulate the necessary condition above as follows: if is a fixed

mode,then s is a transmission zero of all complementary subsystems

belonging to the set of normal and nonsingular subsystems. In

short, a fixed mode is sort of a transmission zero. Moreover, a

transmission zero of a single input/single output system

corresponds to the frequency which cancels the numerator of the

transfer function. It may be concluded that a fixed mode

corresponds to the frequency that interrupts the information flow

between inputs and outputs of certain subsystems.

Although the characterizations presented here are highly

interesting for interpreting fixed modes in terms of uncontrollable

and unobservable modes, or transmission zeros, and despite the
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presence of efficient algorithms for calculating transmission

zeros, these characterizations remain impractical for calculating
the fixed modes of a system because of the long computer time
required.

Finally, the correspondence between Wang's and Davison's

results (WAN-73b) land those of Corfmat and Morse (COR-76b)

presented in the preceding chapter is now clear, because Corfmat's

and Morse's result establishes transmission zeros through the

"remnant polynomial", and the fixed modes are, so to speak,
transmission zeros.

III.4 ALGEBRAIC CHARACTERIZATIONOF FIXED MODESIN THE FREQUENCY
RANGE

/49

In this section, we will be interested in characterizations in

the frequency range. Let us recall that in this range a system is

described by an input-output (U - Y) relationship which may be

presented in the form of "Matrix fraction description"" polynomial

matrices, or by a rational transfer matrix (2-4-3) or (2-2-4).

III.4.1. Characterization by Testing the Rank of a Polynomial

Matrix

The system considered here is described by its "left matrix

fraction description".

Y(s) = s-l(s) T(s) U(s)

or S(s) Y(s) = T(s) U(s) (3-4-1)

with S(s) and T(s), for a system with N control stations

partitioned as follows:

S(s) = [Sl(S),... , SN(S)]

T(s) = [Tl(S),... , TN(S)]

Si(s ) and Ti(s ) are polynomial matrices of appropriate
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sizes. The subsystem i has mi inputs and Pi outputs,

therefore Si(s ) and Ti(s ) bare Pi and m.1
columns respectively. Anderson and Clements (AND-81a)

characterize fixed modes using the following theorem:

Theorem 3-4-1 (AND-81a)

System (3-4-I) has a fixed mode relative to the set of

decentralized controls (K: block diagonal) in so if and only

if an unempty subset exists {ii,..., ij} of {I,..., N}

for which

J

rank [sit(So),..., si (So), ?il(So)""' Ti (So)] < Pt
j j i=l

Recently Zheng (ZHE-84) came to this same theorem with a

different demonstration.

III.4.2. Characterization by Common Transmission Zeros Between

Certain Subsystems

Let us consider system (2-4-4), with N control stations,

described by its transfer function:

G(s) = N(s_____)_ C Ad#(sI-A) B
¢(s) - det(sl-A)

If we suppose that an output feedback control U = K Y + E is

applied to the system, then the closed loop transfer matrix is:

H(s) (I_GK)-IG = adj(I-GK) N(s)
¢(s) det(I-GK)

therefore the typical closed loop polynomial is expressed:

/5O

@(s,K) = det(sI-A-BKC) : @(s).det(l-GK) (3-4-2)

Let the number of elements of set I be represented by lIIIl•

If IIIII=IJII then X[_] represent the minor of

matrix X formed by the elements of lines I and of columns J. By
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expanding det(l-GK) according to the principal minors of GK,

expression (3-4-2) is expressed:

i=I t}Ill =i

using Binet-fiauchy's formula (GAM-66), we obtain:

i=l IllII =i IIJIl =i

where G[_] is a the minor of G(s) formed by

elements of lines I and columns J (this minor represents a

subsystem of dimension IIIII_, see III.3.3b).

K[_] is defined in a similar manner from K.

T

This gives us the typical closed loop polynomial:

with

_(s,K) = ¢(s) +
P

iZ_l IIIIIZi= Ihlll_i=
(3-L3)

I

Note that Z[_] is a polynomial for every

I and J, and that its roots are transmission zeros of the

represented by the minor G[{j]; wesubsystem

actually have:

C I 0
= ]sI-AI. [Ci(sI-A)-I Bj] =¢(s) OtaZ]

Note also that formula (2-4-3) is valid for any feedback matrix

structure K.

III.4.2a. Seraji's Characterization: (SER-82)

Seraji (SER-82) considers the system composed of N single

input/single output subsystems, i.e.: mi = Pi = 1, i=-l,...,N,

i.e. m = p = N. The decentralized control matrix is therefore

diagonal FK = diag(ki). If I = F{i,..., iq] a subset of

{1,...,m} with ii < i2 < iq then expression (2-4-3) is

expressed:
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m

,(s.K>:,<s>. Z Z k xk. ,,.... xk. _,z[_]q=zIlzll=q Zl z2 Zq
(3-/-+.-4)

based on this expression Seraji (SER-82) demonstrated the

following theorem:

Theorem 3-4-2 (SER-82)

A necessary and sufficient condition for s to be a

decentralized fixed mode of system (2-4-3), composed of single

input single output subsystems, is that s is a transmission zero

common to all subsystems of dimension j=I,...,N formed by

selecting the same inputs and outputs of the system.
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This theorem may be reformulated by: fixed modes of the

system are zeros of the highest common divider of all

Z_] and @(s).

When the local controls are not scalar (m. _ Pi1 'i

mi _ 1 and Pi _ 1 .-_/block diagonal K matrix) Seraji
I

(SER-82) converts the converted system (diagonal control matrix in

the new base). If P is the conversion matrix:

^ K k I kpK = P K _v-itlq = diag ( , .... ) ",

^ lG =G P

P = K diag ( , .... --if--)
P

The fixed modes of the system are fixed modes of the

converted system which are given by theorem (3-4-2) applied to

this converted system.

Seraji's approach is interesting for this single input and

single output case, but it seems difficult to use in a general

case. Seraji (SER-82) provides the necessary and sufficient

condition for the existence of fixed modes of the converted system,

but in the original base, these conditions are not necessary.
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III.4.2b. Characterization by Vidyasagar and Vioswandham

(VID-83)

Vidyasagar and Vioswanadham consider the traditional case of

a decentralized control where K is a block diagonal matrix with

arbitrary diagonal blocks. Some K minors are therefore

identically zero, and the corresponding terms do not appear in

expansion (3-4-3). According to (3-4-3) a fixed polynomial is

p.g.c.d, of @(s) and Z[_] which correspond to

K[_] which structurally are not zero.

Vidyasagar and Viswanadham (VID-82 and 83) characterize a

decentralized fixed polynomial by the following theorem:

Theorem 3-4-3 (VID-82 and 83)

The fixed polynomial of system (2-4-3) relative to the

decentralized control (K: block diag.(K1,..., _), Ki _ Rm_Pi)i. is

given by:

(s) = p.g.c.d. I¢(
s) ; z [ U li2u .... UI'I_

li 1 Ir \_

jl 2 f i
Jil U • U U Jir '

where {ii,...,i

I.i (_ F.l ' J'z C M.i with IIIill = IIJill

q q q q q q

PI ={i .... , pl }

P2 = {pl +I''''' PI+P2
}

: N-I N

PN = {( Z Pi)+1,..., [ Pi }
i=l i=l

r} is a subset of {1,...,N}, and

for every, q and

The M i are defined in a similar manner by replacing the

Pi by the m i.

/52

If the subsystems are single input/single output, theorem

(3-4-3) is reformulated by the following corollary which is

equivalent to Seraji's results presented in the previous chapter.
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Corollary 3-4-I (VID-83)

If m = p = N and m i = Pi = 1 then the

decentralized fixed polynomial is given by:

(s) = p.g.c.d.{¢ (s); Z[j] , I C {l,...,m_}-}'

Note that the characterization presented here may be

formulated in terms of polynomial matrices ("Coprime

factorization") i.e.: G(s)
S-l(s) T(s). (For more details

see VID-83).

II.4.2C. Characterization By Nu and Jiang (HUJ-84)

By considering the notations of sections III.3.3a, the

results by Hu and jiang (HUG-84) appear in the frequency range as

follows:

Theorem 3-4-4 (HUG-84)

The decentralized fixed modes of system (2-4-3) are given by:

(G(s);Kd) = h A (_(s);Kd)

(_(s);K" d) ({SSN (G(s);K d)

where _) is the transfer matrix of a normal subsystem (def.

3-3-1) and Kd is the control set defined in (3-3-2).

Theorem 3-4-5 (HUj-84)

The decentralized fixed modes of system (2-4-3) are given by:

(_(s);Kd) = r_ Z.T. (_(s))
(G(s);K d) E SSNN (G(s);K d)

where ZT(X) are transmission zeros of X.

This theorem is more interesting in its negative form, i.e.:
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Corollary 3-4-2 (HUG-84) /53

so is not a decentralized fixed mode of system (2-4-3)

if a normal and nonsingular subsystem exists that does not have a

transmission zero in So, i.e.: @(So).det G(So) _ o

III.4.2d. Taraokh's Characterization (TAR-84)

Tarokh's results (TAR-84) are expressed in the frequency

range as follows:

Theorem 3-4-6 (TAR-84)

so is a decentralized fixed mode of system (2-4-3) if and

only if it is a transmission zero of all subsystems, whose

dimension is i i=1,...,min (m,p), of G(s) corresponding to

submatrices of K_.nonsingular
G

The four characterizations of this section are all based on

the expansion of the typical closed loop polynomial (3-4-2). They

use different notations, but they may easily be reduced to each

other. Nevertheless, Vidyasagar and Viswanadhams'

characterization is the easiest to use because it is systematic in

determining the subsystems to be considered.

Since formula (3-4-3) is valid for any structure of matrix K

under consideration, it may be concluded that the

characterizations of this section are generalizable to any control

structure. In particular the case of a centralized control,

Vidyasagar and Viswanadham's theorem (3-4-3) may be expressed in

the form of the following lemma:

Lemma 3-4-1 (VID-83)

by:

The centralized fixed polynomial of system (2-4-4) is given

_c(S) : p.g.c.d.{$(s); Z[Ij], It{I, .... m} ,' J = {1 .... ,p}}
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In the case of a control with any structure, Tarokh's theorem

(3-4-6) is valid after replacing Kd by KF where

KF represents the structure of the control under

consideration.

Example 3-4-1

Let us take another look at example (3-3-1), the transfer

matrix of the system is given by:

C(s) =

o r __1
I s-a

I

S-C I

I
s2-cs-1 ,

, 1
(s-b)(s-a)

I

I o
I

I--
I

i O
I
I,
I 1
I s-3
I

m

For a totally decentralized control, the fixed polynomial of

the system is given, according to theorem (3-4-3) by:
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we have:

¢(s) = (s-b) (s-a) (s-3) (s2-cs-1)

l

Z[_]= (s2-cs-1)(s-a)(s-b) f

Z[_22]=- (s-c)(s-b)(s-3)

_r123_
ZL123J= - (s-c) (s-b)

_'(s) = s-b

however if a=c then _(s) = (s-b)(s-a).

Now let us consider the following control matrix:

kll O 0 "/

KF = k22 k23

O k33 ]
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element k23 connects the 3rd subsystem to the 2nd subsystem, by

combining these two subsystems into a single one with k32 = O.

by applying theorem (3-4-3), we have:

Moreover Z[ 3 2-c
2]= (s s-l) (s-3) and

the system no longer has a fixed mode, unless if a=3 or b=3; it

has a simple fixed mode if a=b=3.

III.4.3 Characterizations of the Closed Loop Transfer Matrix By

Zeros

In this section, we give a necessary condition for the

existence of fixed modes in terms of a closed loop transfer

matrix.

Theorem 3-4-7 (BIN-78) (BER-81)

The matrix derived from the typical polynomial @(s,K) of the

closed loop system (C,A,B,) relative to control K is given by:

_¢(s,K)BK= - M?(s'K) I

where M(s,K) is the numerator of the closed loop transfer matrix,

i.e.: M(s,K) = H(s,K) @(s,K) = C Adj(sI-A-BKC) B.

Proposition 3-4-I

A necessary condition in order for so to be a fixed

mode of the system with respect to the set of controls KF is

that the projection of the numerator of the closed loop transfer

matrix to K_ is zero for s=so, i.e.
i

M(So,KF) = 0

Demonstration /55

Theorem (3-4-7) expresses that the derivative of @(S,KF)
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relative to the set of controls under structural stress K

is given by projecting the numerator of the closed loop transfer
T

matrix to K_, i.e.:

a ¢(s,K F)

KF - - M(s,K F) = llm jll (3-4-5)
j=l, ,p

with
1

mij =

if k.. = 0
lj

where the mij are elements of the numerator of the closed

loop transfer matrix.

Furthermore, if the system has a fixed mode then the typical

closed loop polynomial divides the fixed polynomial, it is

expressed:
@(s,K F) :_(s). P(S,KF)

The derivative of @(S,KF) with respect to KF is

therefore: a@(S,KF) a P(s,KF)

a K F - _(s) a KF

It is clear that if s = s (so fixed mode) then _ a¢ _ O.

K F

Finally with (3-4-5) we have M(So,KF) = 0.

Proposition (3-4-1) shows that a multiple mode of order q may

be a fixed mode of order q* _ q if its order in the local

subystems does not exceed (q-q*). Therefore, the simple modes of

the overall system, which are also fixed modes, do not belong to

the typical polynomials of closed loop local subsystems.

Consequently, they belong to the set of modes of complementary

subystems of the system. We may therefore reformulate proposition

(3-4-1) according to the following corollary:

Corollary 3-4-3

If so is a multiple mode of order q, then a necessary

condition for s
o to be a fixed mode relative to K F is
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that the typical polynomial of the projection of the transfer

matrix from the system to K_ has
T

a zero
!

in so of a maximum order q-1.

Note that proposition (3-4-1) and corollary (3-4-3) are valid

for any control structure, particularly for a centralized

control. Corollary (3-4-3) expresses that an uncontrollable

and/ora unobservable simple mode does not belong to the

denominator of the transfer mode (minimal realization). Such a

result is well known.

Example 3-4-2 /56

Let us take another look at example (3-4-1), the projection

of the transfer matrix to K! is:
F

it may therefore be stated according to coro lary (3-4-3) that

modes a,b, and 3 are not fixed.

If a decomposition is not imposed, the corollary (3-4-3) may

select a decomposition without fixed modes.

Characterization of Distinct Modes

Given a system (2-4-4) with distinct modes, its transfer

matrix may be decomposed as follows:

G(s) -
At(S) n A.(s)

+ _ _ At(s) + O
s-s I s-si=2 i

s i + s 1

At(s) _
+ G(s)

S-S 1

i=2,...,n (3-4-6)
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Davison and Ozguner (DAV-83) (DAV-85b) gave the following theorem

for systems with 2, 3 or 4 control stations. Similar results may

be obtained for N a 5 using a recursive characterization (theorem
3-3-3).

Theorem 3-4-8 (DAV-83) (DAV-85b)

s I is a fixed mode of system (3-4-6) if and only if

none of the following conditions is verifiable with respect to

matrix AI and to matrix _(s 1) = G(s)- , or with
$=S

respect to their transpos]tlon: i

Case I: (N=2)

(i) ro:,] rx x]1--+-- _(s_)= L-o":'x-J", --to,oJan.

Case 2: (N=3)

Case 3: (N=4)

74

ro o !]r,:,,,li) A 1 IO- o , _(sl) -",-",-: ....., :IX ,x,xl
Lo: o : and L'°";'6"r_']

[_: n o I !

o ,x,xl F×,×,xl
ii)AI= _;.<LblJ_(s) =i_-_-]-_i

,.o :oj an.d i Lo"",x""",xJ

[o:x_oI [.x.:x.;]
i_i>fl: Iio.":,'._.-,._./_(s) :I.O.:x,

. ' rx[_:LO,X ,oj and 1

Fo:o :o :xl Fx :x:x:xl
**'0* *.,...A... * ° _'**r * -_-- *12o....o.-..o.,:.x./ I_.,..x.:x.._xl

_) Ai : {_o_Lo-o:xlanti_(_i) = ' ' '""lX.X x.xl
o,o_o-o_oo.poooL_:_:___J L6:o.o,xj

o;o:xixl
''°I" "''_o "" "'° "o.o ,x,xl

ii) Ai = b':'6"rb'z'6"| _'(s
......_....-..._a
3:O:O_OJ

Fo,o :x:ol
-- a-- °9..° I .°I_,o ,x,o/

_) A1 : I_':%':'_'!'b'/
L_T_!___Jand

O o OX,X,X,X]
-° .io o .g... to...

l.x..;x;.x :..x.l
lo.o.x.xl
L-(_ ; 0 _ X _X°°'," -°_r- °- -...j

_(s ) =
1

Fx :x; x :xl
-.._ .... . .....Io '.x:x :x'l
-- .--._. --,°..l'i_.o.:x.oi
Lx'xl_',_']
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Fo :x :x:x] Fx :x: x :x]
•..,---, --.;--.---r-_--':-_ |o x. x x]

15. o o../ _'(_) -" |5"_"x-_"._liv> A_ = I5"..b_'6"I'_] and ............ :-.-
LS"i"5"_'_ r<l [o _x! x ..xJ

Fo :x :x'o] Fx :x: x ',x]
I_,_'!'___ I I_-t-_:"_ :_ I

,,) A_= 15":'4",'b'T6"I _'('_) --"1"6"_'_'!'k-rG"l
""_ ..... _'" "" "i"':" ""T'"
L6 'X_X :OJ and [X .X :X .X'J

Fo ,.x.o :o3I_:o,o .ol
vi) A I I_ :X '0:0"1 and

°° .,!. °._ °°% --°L_,x !o .oJ

ro..:.x.:o.i.x.1
I I !16,o ,o..o.1

vii) A I = Ib--rk-lo-x/
L_:o :o :oj

X:X:X :X]

"6""_":b":'6"i
= - ......:.---:.-_(_l) Ix..Lx.:..x._xI

Lx !x_x _x]

x :x :x :x]
6r_-:b-:_l

_(s 1) = ..... ;...,--- Ix .x.x ,xl
and -- -:........_.-..L_:x:oxj

where X is an element that is not necessarily zero.

In the case of 2 control stations (N=2), the theorem may be

interpreted as follows: after simplification, elements G11(s),

G21(s) and G22(s) are not poles in sI and the elements

of G12(s) have a zero in Sl, or, on the other hand,

G11(s) and G11(s), G12(s) and G22(s) do not have a

pole in sI and the elements of G21 (s) have a zero in

Similar interpretations may be made for the other cases. /58

Example 3-4-3

Given example (3-4-1), with a_b, the transfer matrix may

be decomposed as follows:

I
0 0 0 I (s2-cs-1)(s-3)0 a I

' ' (s-c) (s-a)(s-3) I 0i 0 i I

", _ (s2_cs-l) (S-3)

I b-a I 0 ,-- _ a-b
C(s) = +

s-b

010

:(s-a) (s2-cs-l)

(S 2-CS-1) (s-3) (s-a)
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For s=b we have:

TA 1 (s=b) = 0 *

0 0
and T

s-bJ s=b 0

with*: nonzero parameter. AT and GT(sl) verify

the condition i of case 2 of theorem (3-4-8), therefore s=b is a

decentralized fixed mode of the system.

IIl .4.5. General Characterization in Terms of the Transfer

Matrix

Anderson (AND-82) developed a complete characterization of

decentralized fixed modes based on the results presented in

section III.4.1. Given system (2-4-3), and subsets:

I = {if,..., ik }C{I,...,p} with i I ,c i 2 < ... < ik,

J = {it''''' Jk }(Z{l'''''m} wl.i-h Jl < J2 < "'" < Jk

Let IIIJl be the number of elements of set I, and x[_
i

minor of matrix X consisting of I lines and d columns.

be the

Theorem 3-4-9 (AND-82)

Let us assume that by reordering the inputs and outputs, the

transfer matrix of the system is expressed:

C(s) ......... =IS(s). ss (s)]-I

Y.(s)z= J_ Gij(s) Uj(s) i,j =a, B

If P_(m_) (PB(mB)) are the number of lines (columns) of G

(GBB), then P_= P_ + PB and m = m_ + m8.
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Let us consider decentralized controls K = block diag. <_, _),

and so is assumed to be a multiple zero of order _ of the

typical polynomial of the system. Therefore the two following

conditions are equivalent:

i) rank Is (so) ? (,o)] < p:

and the fixed mode so is multiple of order q.

ii) so is a multiple decentralized fixed mode of order q if 0

< q _ q exists so that when nr + n c _ p , we have:

+n -- )nz _ (q-q) + (nr c _ (3-_7)

for all G(s) minors. If _ > q, the equality is verified at least

for one choice of I and J where nr + nc = P_.

with:

I

nz < 0

nz = 0

n z = ao

number of zeros in So of minor G[]]

so is a pole of order - nz

so is neither a pole nor a zero

the minor is identically zero.

and nr = n Ill
r JJ number of lines among the;p_ first lines which do

not belong to the minor under consideration, and

given by:

nr[_] :lit m{1,...,p=}ll with IU T : (1,...,p} i

and n : nc[]i_ number of columns among the ms first

columns which belong to the minor

under consideration, and given by:

[i]j = n -=}If

The quantity (n r + n c - P_) represents the position

of the minor in the transfer matrix.
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According to theorem (3-4-9) there is a multiple fixed mode

so of order q if and only if certain minors have a zero in

so of a minimum order or a limited multiplicity pole, and if

so is at the same time a G(s) pole.

Anderson's theorem is complicated in its general form, but it

may used in a simple form for special cases, particularly for

systems with simple modes as shown in the following theorem:

Theorem 3-4-10 (AND-82) (OZG-83) /60

If so is a simple mode of the system, then with the same

assumptions as in theorem (3-4-9), So is a decentralized fixed

mode of the system if and only if the transfer matrix of the

system (or its transposition) may be expressed:

no element has a pole ! s is a simple zero of the typica

, o i]I
in s i pol_al of this block. I

G(s) = - _o_ - -i...............
i

each element has a i no e1_t has a pole i
I in szero in s o , o J

Example 3-4-4

is:

Given example (3-4-i) with a=c and b=3; the transfer matrix

Yl I

Y2 I •

! 1
0 o ----"

I 8--1

!

s-a l
• ! 0

s2_as_l

!
0 i !

i (s-3)(s-a)

0

m m m _ m

I
m

S-3

[°l]U2

U3

the typical polynomial is @(s) = (s-E) 2 (s2-as-1)
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Simple Mode: s = a

By reordering the inputs and outputs, matrix G(s) is
expressed:

" I
, 1

o o I s--'_
1 ! 1

--s-3 !1 (s-3)(s-a)
S-a --I--

0 ! 0
s2_as_l

• a

U.I

U_I

ml-4

U..I
_m

and by combining subsystems 1 and 3, theorem (3-4-10) gives a

fixed mode in a.

Multiple Mode: s = 3

By reordering the inputs and outputs, the transfer matrix is

expressed:

l
1 ,

I
S=3 ,

i

I
: 0 I

I

I
o j

I

0

$--a

2
s -as-1

1

!
m

s-a

O

Y3

Yl

Y2

fl li

II

and by combining subsystems 1 and 2, we have:

-oP_= 2 _L_td P = P_ + i)6)= 3

% :2 d m:% +% :3

and the mode under consideration is multiple of order _ = 2.

/61

The minors of G(s)verifying nr + nc _ p_ are:G[_] ' G[2Z],G[_], G[_], G[31]'

i2 12 13 13 23 23 23 [123l
G[32], G[ ], G[12)', G[13], G[12], G[13], G[12] , G[1 J,__ G[23] & GL123J .

According to theorem (3-3-9) s=3 is a fixed mode of order q

if and only if a q exists so that (without considering the minors
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including z = _ since condition 3-4-7 is then always verified):

z : i > q - 2

z = 0 > q - 2

the two inequalities are verified for q=l (not for q=2) and

therefore s=3 is a simple fixed mode for the division under

consideration.

C)-The case of a decentralized control with three stations is

included in cases_ and(_,, therefore the system has two fixed

modes in a and b=3.

III.4.6. Interpretation

The characterizations of fixed modes in the frequency range

area divided into two groups:

1) According to the methods the fixed modes can be

characterized by transmission zeros of some subsystem s(see

III.4.2). These methods are a reformulation of the

characterizations of section III.3.3 in the frequency range: a

fixed mode is a transmission zero which corresponds to the

frequency which cuts the information flow between the inputs and

outputs of certain complementary subsystems (zero transfer matrix

G(so) = O.

2) Characterizations making it possible to interpret the

appearance of fixed modes in terms of uncontrollable and/or

unobservable modes (see III.4.1), III.4.4., III.4.5).

Let us consider the special case of a system with two single

input/single output systems described by:

G(s) : F gll gI_]Lg21 g2 (3-4-8)
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By applying a control u - k y to the 2nd

22subsystem, the transfer func ion seen from the first station is:

YI(s) k2

Ul(S ) - g11(s) + g12(s) g21(s)
1-822(s) k2

(3-4-9)

Figure (3.2.a) illustrates this relationship.

uI

T T
(a)

--l--

i Ikl

(b)

g%2 ÷

/62

Fig. 3.2. - Illustration of a Fixed Mode Giving an

Uncontrollability

Key: 1-no pole in so; 2-zero in so; 3-pole in So;

4-no pole in so.

For this special case, Anderson's theorem (3-4-10) may take

on the following form:

Theorem 3-4-11 (AND-82)

Given system (3-4-8), then so is a simple decentralized

fixed mode of the system if and only if the transfer matrix of the

system or its transposition has the following form:

L no pole in $ I 1

I pole in s
G(s) = o _ o

I
zero in zo , no Dole in so
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Figure (3.2b) illustrates the theorem and shows that to have

a zero in so for g21 and a pole in so for g12

reveals an uncontrollability (see II.2.4). The appearance of a

decentralized fixed mode may be interpreted as a zeroCpole (or
pole-zero) interpretation in the product g21 "2

g2_ _ 17922k2 " g12'therefore by a decentralized uncontrollability u ooservaolilty).

For the case under consideration (simple mode) this

uncontrollability (unobservability) should not be provided by

direct chains (gll and g22 do not have a pole in So).

This result corresponds exactly with Davison and Ozguners' theorem

(3-4-8) and with the condition of proposition (3-4-1). Theorem

(3-4-11) shows that if G(s) is natural and so is a fixed mode,

then the system should have at least three poles, two among those

may coincide, but not in so.

If So is a multiple fixed mode of the system, then the

direct chains (gll and/or g22) may have a pole in so of an

order lower than the order s o in one of the typical

polynomials of the transfer functions between stations (g21

and/or a g12) (AND-82). In this case, the pole-zero

simplification is done between a g22 pole, or a block
k2

zero , , and a g12 and/or g21 pole, which results
1-g22k2,

in a decentralized uncontrollability or unobservability

/63

In the general case of simple fixed modes theorem (3-4-10)

reveals a partition into two aggregates stations_ and B, a

partition already found in the characterization in the time

range. The interpretation can be made in a similar manner to the

case of the single input/single output subsystems: the pole-zero

simplification is done between a pole of block GaB(or GB_ )

and a zero common to all elements of block GB_ (or GAB).

Figure (3.2b) also shows that the fixed mode remains so even

if k2 is replaced by a transfer function because this change

does not prevent the poles and zeros of g21 and g12 from

being simplified. Such a result was already; found by Wang and

Davison (WAN-73b) and Corfmat and Morse (COR-76). Note that if
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k is changed into an unsteady control, it will no longer be
2

possible to simplify: this idea is used to eliminate the fixed

modes (see chapter Vl).

Finally, note that if g12 = 0 (or g21 = O) the modes

g21 (g12) will be uncontrollable for the looped system

(3-4-9) (therefore they remain fixed). Moreover, their existence

is independent of the values of the system parameters. These

modes are called STRUCTURAL FIXED MODES, details of their study

are given in the next chapter.

III.5. CONCLUSION

We have described in this chapter the algebraic methods for

characterizing the fixed modes in the time and frequency ranges,

and have shown the links between these different

characterizations. Thanks to these methods, we were able to

interpret the fixed modes either in terms of system transmission

zeros or in terms of controllability and observability.

It is evident that the methods presented here are of unequal

importance, but that each contributed to giving part of the

present results. Let us stress for example that Seraji's

characterization (SER-82) is impractical for general cases, but

that he was the first to develop typical polynomials of the closed

loop system to characterize the fixed modes in terms of system

zero. This same development was used later by Vidysagar and

Viswanadham (VID-82,83), Tarokh (TAR-84) and Hu-jiang (HUj-84),

either to characterize the fixed modes in a more direct way in

terms of transmission zeros (TAR-84), or to provide a more

systematic method of calculating fixed modes in the frequency

range (VID-82), 83). Note that Davison and WAng (DAV-85a)

recently gave a new more direct characterization in terms of

transmission zeros.

Studies by Davison et al (DAV-83, see III.3.2 and III.4.4)

are of limited interest compared to other methods. Conversely,
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those of Anderson et al (AND-81a, 82) are important because they

show that the control and observation stations are partitioned

(for a system with a fixed mode) into control and observation

stations for which the fixed mode is simultaneously uncontrollable
by one and unobservable by the other. They therefore show that
the notion of fixed modes is an extension of the notion of

controllability and observability.

Finally, we personally proposed a method of calculating
fixed modes in the time range based on the notion of the

sensitivity of natural values in a closed loop (see III.2.2), and
in the frequency range, a necessary condition for the existence of

fixed modes (see III.4.3.) permitting a decomposition without
fixed modes.

CHAPTERIV - STRUCTURALFIXED MODES /65

IV.1 INTRODUCTION

Knowing that the values of the parameters associated with a

physical system are never accurately known, Sezer and Siljak

(SEZ-81a) (SEZ-81b) demonstrated that the fixed modes may come

from two sources: equality between certain parameters of the

system (in this case a small parameter disturbance is enough to

eliminate them) or the structure itself of the system. In this

case, the fixed modes are called STRUCTURAL ones. They can

only be removed by changing the structure of the system. The

following example shows the difference between these two types of

modes.

Example 4-I-1 (SEZ-81a,b) /66

Given example (3-3-2) and a decentralized control K =

diag(kl,k2) , the closed loop dynamic matrix is:

D = A+BKC = I

k2 0
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Expressing the typical equation:

(det (sI-D) = (s-I) (s2-2-1-klk2)

we see that the system has a natural value s=l which is

independent of the kI and k2: s=l is a decentralized fixed

mode of the system.

If E is a small variant in an element of A which becomes:

I!1°jAc = 1 0

0 1+

= s(s-1) (s-l-c) - (s-t-s) - klk2(s-1)Ithen: det(sl-D c)

and the fixed mode s=l disappears; it was nonstructural.

Conversely if A:

A = 0

0

(sI-D) = s (s2-ab-klk2)then det

and we have a fixed modes=O, which will remain for any variation

in the nonzero elements of matrices A, B and C. This is a

structural fixed mode.

Sezer and Siljak (SEZ-81a and b) then divide the fixed modes

into two types; STRUCTURAL FIXED MODES (MFS) and NONSTRUCTURAL

FIXED MODES (MFNS). By this distinction they generalize the

notion of fixed modes in that the structural fixed modes (*) are

modes of the system that remain invariant under any nonzero

parametric variation of the system, not just the control

parameters. Note that this notion is derived by generalizing the

notion of structural controllability under structural stress, that

we are going to study in the next section:

(*) See def. 4-3-3 for a more accurate definition.
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IV.2 STRUCTURAL CONTROLLABILITY AND OBSERVABILITY

The notion of structural controllability was introduced by

Lin (LIN-74) in 1974 for single input nonlinear systems. Shield

and Person in 1976 (SHI-76) applied his results to multi-input

linear systems using algebraic methods. In the same year, Glover

and Silverman (GLO-76) considerably simplified Shield and

Pearsons' conditions by reducing their algebraic results to simple

operations on Boolean matrices. Davison (DAV-77) was interested

in structural observability as a dual notion of structural

controllability.

In the structural approach, only the zero elements of the

system matrices due to the absence of physical connections between

certain parts of the system are considered to be perfectly

determined, and therefore fixed. The other elements are

considered to indicate only that connections exist.

M is said to be a structured matrix if its elements are

either fixed zeros, or independent parameters (SHI-76).

Definition 4-2-1 (SHI-76) Structurally Equivalent Matrix

Two matrices are said to be structurally equivalent if and

only if the positions of the zero elements of one correspond

exactly with the positions of the zero elements of the other.

Definition 4-2-2 (SHI-76) Structural Rank

The structural rank of a real matrix M, notated gr(M)*, is

the maximum rank that a matrix equivalent to M can have. It is

determined only as a function of its zero elements, independently

of the values taken on by its nonzero elements (see Appendix 2).

(*) gr: as in "generic rank" in English.
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Definition 4-2-3 {SHI-76) (DAV-77)

The system (C,A,B) is structurally controllable and

observable if there is a controllable and observable system

(C,A,B) structurally equivalent to (C,A,B).

Theorem 4-2-I (SHI-76), (CH0-82)

The system (C,A,B) is structurally controllable and

observable if and only if none of the two following conditions is
verified:

i) a permutation matrix P exists so that C,A and B may be
put in the form:

ii)
pAp T = A21 A 2

CP T =[C 1 O]

gr [i _] <n

PB =

Davison (DAV-77), Franksen et al (FRA-79a and b) and /68

Reinschke (REI-81) reformulated this theorem in terms of graph

theory. This formulation is given in chapter VII (theorem 7-3-1).

Finally, note that Mortazavian (MOR-82) introduced the

notion of structural (observabililty) controllability index as a

concept equivalent to the standard (observability) controllability

index. It showed that the standard controllability index is

greater than or equal to the structural controllability index.

For more details the reader is referred to (MOR-82).
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IV.3 DECENTRALIZEDCONTROLLABILITY AND OBSERVABILITY

Kobayashi et al (KOB-78) and Momen and Evans (MOM-83)
defined decentralized controllability as follows:

Definition 4-3-1} (KOB-78) (MOM-83) Decentralized
Controllability

A system with N control stations is controllable under

decentralization stresses if a decentralized output feedback

control exists that transfers any initial state of the system to

the origin in a finite time interval T, i.e. X(T) = 0 V X(o).

By defining the states that are controllable and observable

by station i as the controllability subspace of station i, and the

states that are controllable and observable by station i in

conjunction with other stations (by looping the stations, with the

exception of i) as the expanded controllability subspace of

station, the following theorem is proposed.

Theorem 4-3-I (KOB-78)

The system (2-4-1) with N control stations is controllable

in a decentralized manner if and only if the union of the expanded

controllability subspaces of all stations form the state space of

the system.

Definition 4-3-2 (MOM-83) Decentralized Structural

Controllability

System (2-4-1) is structurally controllable under

decentralization stresses if and only if a system exists that is

structurally equivalent to (2-4-I), and controllable in a

decentralized manner.

Momen and Evans (MOM-83) using the notions of graph theory

give a structural version of theorem (4-3-I).
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Results by Kobayashi and Yoshikawas (KOB-82), Momen and

Evans (MOM-83) are very interesting, because they directly
associate decentralized uncontrollability with the existence of

fixed modes. For a system with N control stations, Kobayashi and

Yoshikawa KOB-82) define the quotient system as a station

regrouping into q classes (q _ N) where each class is made up of

stations that have nonzero transfer matrices between them. (In
terms of graph theory, a class is made up of highly connected

stations). The transfer matrix of the quotient system is

therefore block-triangular. Kobayashi and Yoshikawa propose the
following theory:

Theorem 4-3-2 (KOB-82)

The system (2-4-I) is structurally controllable under

decentralized structural stresses if and only if the quotient
system does not have fixed modes.

Definition 4-3-3 (SEZ-81) Structural Fixed Modes

System (2-4-1) has structural fixed modes with respect to

control KF if and only if all systems structurally equivalent

to (2-4-I) have fixed modes with respect to the same control.

Momen and Evans (MOM-83) give the following theorem:

Theorem 4-3-3 (MOM-83)

System (2-4-1) has no structural modes with respect to the

decentralized control if and only if it is structurally
controllable and structurally observable under the
decentralization stress.

The first interesting conclusion is that the structural

fixed modes of a system are fixed modes of the quotient system:
they are structurally uncontrollable under decentralization

stresses. This uncontrollability is due to the lack of
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information transfer between the subsystems (zero blocks in the

transfer matrix). The second conclusion is that a highly

connected system (def. 2-4-4) is always structurally controllable
in a decentralized manner and therefore never has structural fixed

modes. If it has fixed modes then they are nonstructural. This

conclusion is confirmed by Chong (CH0-82).

Chong (CH0-82) borrows Corfmat's and Morse's method

(COR-76a,b). (See II.4.3b) and gives the equivalent of their

results from the structural standpoint.

Theorem 4-3a-4 (CH0-82)

Since system (2-4-1) is controllable and observable, a
decentralized control exists making the system structurally

controllable and observable by a single station if and only if all

complementary subsystem of the system are structurally complete:

i ) gr _n

c8 o

ii) the system is highly connected, i.e. CB(sI-A)-I

B_ _ 0 Vs . or _ and B are defined in def. (2-4-3).

IV.4 ALGEBRAIC CXARACTERIZATION OF STRUCTURAL FIXED MODES

/70

Using the results developed for structural controllability

and observability (LIN-74) (SHI-76) (GLO-76) Sezer and Siljak

(SEZ-81a) characterized structural fixed modes by the following

theorem.

Theorem 4-4-I (SEZ-81a)

System (2-4-1) has structural fixed modes with respect to a

decentralized control Kd if and only if one of the two following

conditions is proved:

i) acNand a permutation matrix P exist such that:
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c o o]
2 C 3 ]CBP :[C_ CB 8

(4-4-i)

ii) :c u exists such that:

gr =

where sets _ and B are two natural subsets of the set

N = {1,2,...,N},with _ =aUB

Note that this theorem may be generalized for a control

under any structural stress. Simply substitute _,and B by I and j

(see def. 2-4-7) (PIC-84).

Theorem (4-4-I) establishes two types of structural fixed

modes: type i which corresponds to the modes of block A22 in

(4-4-1) and type ii which corresponds to the fixed modes at the

origin. These are independent of the values of the system

parameters, not just of the control.

The diagram of figure 4.1 illustrates condition i of theorem

4-4-1 and shows that for a system with type i fixed modes, the

state space is divided into three components X1, X2 and X3.

States X2 correspond to the fixed modes and are, for a partition

of control and observation stations into two aggregated

stations, _&B, uncontrollable by station B and unobservable by _.

The block-triangular structure of the system matrices makes the

transfer matrix of the system (after reordering the inputs and

outputs if necessary) is block-triangular, and therefore the

information transfer from station B to station _ is not provided

(see fig. 4.1). In this case, the fixed modes are structurally
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f-

Inputs

!

'1

' ! Outputs

State Space

Fig. 4.1 - Accessibility in a system

With Structural Fixed Modes

uncontrollable under decentralization stresses.

Type ii structural fixed modes are modes at the origin. The

transfer matrix of a system with a simple fixed mode may appear in

two forms (see theorem 3-4-10):

Either it is block-triangular:

LcB_ I GBIBJ

where G8_ has a mode at the origin. This mode is of the same

nature as type i structural fixed modes. It belongs to the modes

of the quotient system and is therefor structurally uncontrollable

under structural stress. These modes are therefore called type

iil structural fixed modes.

Or it is highly connected, i.e.:

j o 1__
L°B(_ I GB_J
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i
where _e has a mode at the origin and all elements of G_Bi have a

zero at the origin. In this case the fixed mode can be of two

different types: if the zero at the origin of one of the

elements is the result of a simplification of type as+b-c with

b=c, the mode is then nonstructural (see example 4-4-1) (a small

disturbance of parameters b or c is enough to eliminate it).

However if zero is not the result of such a simplification, then

the mode is structural because its position at the origin makes it

independent of the system parameters. However, ita is comparable

to nonstructural fixed modes because it is the result of a

pole-zero (zero-pole) simplification. These modes are therefore

called type ii 2 structural fixed modes (example 4-4-2). Note

that owing to the highly related property of the transfer matrix

(def. 2-2-4) these fixed modes are structurally controllable under

decentralization stresses. Therefore an unsteady control can

eliminate them (KOB-78) (AND-81b) (see ch. VI).

Example 4-4-1)

/72

by:

Let us consider a system with two control stations expressed

oX = a22 X +
!

0

0

, u I {
!

The transfer matrix of the system is:

G(s)
I_ I s+2(1-a22) I

l /

0 , (s_a22)(s_ 2) ,.......

1 I ;
- I 0
S t

it is clear that the system has a fixed mode at the origin only if

a22 = 1. Therefore s=O is a nonstructural fixed mode.
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Example 4-4-2

by:

Let us consider a system with two control stations expressed

oa12[b11a21 O X + 0

0 0 0

[o o_ .lY: o --o-Jx

The transfer matrix of the system is:

G(s) =

0
c13b32

b11c21s

2
s -a21a12

0

U

The system has a fixed mode at the origin for any system

parameter variation is highly connected, therefore the fixed mode

is structural of type ii 2.

/73

IV.5 DETECTION OF STRUCTURAL FIXED MODES

In this section, we shall apply the results of section

III.2.2 to calculate the sensitivity of structural fixed modes.

Let us reconsider the gradient of a distinct natural value with

respect to variations of the matrix elements D (equation 3-2-7).

d s

r W T dD

d(dij)- r d(dij) Vr
(3-2-7)

where W r and Vr are left and right natural vectors of

matrix D and correspond to Sr. Let us assume that elements

dij and D depend on physical parameters R1, R2,...,

RQ. If R is one of these parameters then the derivative of D

with respect to R is expressed:
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Pij(R) I i I

@R =

o if
dij = 0

with P _ dij (R)
ij(R) = -

_R (4-5-1)

where Ii and lJ are respectively the i-th column and j-th

column of the unity matrix. By carrying (4-5-i) to (3-2-7) we

obtain:

pij(R) W I I. V

[ _Sr_@R = { ifr ] r
lij 0 d.. = 0

13

f Pij(R)I w i vj

1
O if dij = O

where w i and vj are the i-th and j-th components of the

left and right vectors corresponding to sr respectively. By

generalizing this relation, we obtain the gradients of a natural

value with respect to the parameters RI,..., Rq:

\( BsrBRt lij ={ Pij(R#= wi vj i,j=l,...,n (4-5-2)

0 if d.. = 0 t=l, .. . ,q
l]

In a general case, the derivatives P,:(R) I

at the same time, we therefore find that a natural value is

insensitive to the variations of Rt t=l,...,q if and only if

wi.v j = O. This makes it possible to state the following

Iemma :

are not all zero

/74

Lemma 4-5-1

A necessary and sufficient condition for a simple natural

value sr of a real matrix to be insensitive to the variations

of the elements of matrix D is: wi.v j = O, i,j=1,...,n

where w i and vj are the i-th and j-th components of the

left and right natural D vectors corresponding to sr.
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Definition 4-5-1 (TAR-84a) Structural Sensitivity Matrix

The structural sensitivity matrix SSr of a simple natural

value Sr is defined by:

with

SS = IIs _ =i,..r si] i,j ,n

lif w..v. _ 0

SSij-- 0 if dij = 0

0

The following proposition characterizes structural fixed

modes:

Proposition 4-5-1 (TAR-84a)

Given a closed loop system (3-1-2) with distinct modes, then

Sr is a structural fixed mode with respect to control K F

if and only if one of the following conditions is proved:

1) The structural sensitivity matrix SSr corresponding

to sr is identical to one of the structural sensitivity

matrices of the set of matrices of systems structurally equivalent

to system (3-I-2).

2) The structural sensitivity matrix SSr corresponding

to sr is identically zero.

Demonstration

It is clear that the two conditions of this proposition are

equivalent to the conditions of Sezer and Siljaks' theorem

(4-4-1). Condition 1 corresponds to type i fixed modes that are

modes of block A22 (equation 4-4-1). These modes are also

sensitive to variations of the elements of this block.

Consequently, the structural sensitivity matrices are equivalent

for systems which have type i structural fixed modes. For
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condition 2, the modes that prove it are modes at the origin and

they are independent of any variation of the system elements.

According to Lemma 4-5-1, it may be concluded that the structural

sensitivity matrix corresponding to sr = 0 is identically zero.

The following algorithm provides a numerical method for

detecting fixed modes and defining their nature.

/75

Algorithm 4-5-I

To find the fixed modes of a system with distinct modes,

relative to the set of KF controls and to determine their

origin:

1 - Select a control matrix K E K F so that the modes of

a closed loop system o(D) = a(Aa÷BKC) are distinct.

2 - for any sr E o(D), calculate the sensitivity

matrices relative to control SKr (defined in 3-2-10). If

SKr is zero, then the natural corresponding value is a fixed

mode, i.e. srEA

3 - If A is an empty set go to 12.

4 - For any sr EA , calculate the structural sensitivity

matrix SSr; if SSr is zero, then the corresponding natural
\

value sr is a type ii structural fixed mode, i.e. Sr_As2.

5 - Do A I =A -AS2. _

If AI is an empty set, go to 11.

6 - Select a matrix D that is structurally equivalent to

so that the natural values o(D) are distinct.

D

7 - Determine the fix modes U by returning to phase 2, or _.

If A is an empty set do ANS= AI and go to 11.

8 - For any Sr E A calculate the structural sensitivity
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matrices SSr; if is zero for certain st, then

these are type ii structural fixed modes of system D, i.e.

r S2"

9 - DO _I =_ - _S2"

If A1 is empty then ANS = A1 and go to ii.

I0 - For any sr 6 AI, compare SSr with the set

of matrices-h-S; if a matrix SS exists that is equivalent to

SSr, then Sr is a type i structural fixed mode, i.e.

s r E A SI-

11 - -The fixed modes of the system are:

A

A
$2:

ANS

: set of fixed modes.

: set of type i structurai fixed modes.

: set of type ii structural fixed modes.

: set of nonstructural fixed modes.

12 - Stop

Remark: A corresponding FORTRAN program is given in (TIT-86).

Example 4-5-I /76

Given example (3-3-I) with q = c = 2 and b = i, and K =

diag (1,2,1); we have:

D = A+BKC =

"0 0 0 1 1

0 4 1 0 0

0 0 1 1 0

2 0 0 2 0

ul 0 0 0 2

by applying algorithm (4-5-I) we get the results of tabl. (4.1)
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Table 4. I

The fixed modes of the system are

system selected is:

]he equivalent

D -_

0 0 0 0 0,25"

0 1.4 0.4 0 0

0 0 0.65 0.7 0

1.6 0 0 1.9 0

1.05 0 0 0 2.5

Table (4.2) gives the results on the equivalent system.

By comparing matrices SS and SS we have:

type i structural fixed modes

and nonstructural fixed modes

k sl ={ z}

k NS {2}

IV.6 COMMENTS

Sezer's and Siljak's characterizations (SEZ-81b) may be used

to interpret the structural fixed modes, by generalizing

Anderson's and Clement's results (AND-81a): A structural fixed

mode (type i and iil) is, by regrouping the stations into two

aggregated stations, structurally uncontrollable by one of the two
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Table 4.2

stations and that are stucturally unobservable by the other.

These modes can only be suppressed by changing the control

structure (see ch. VII). Conversely, a type ii2 structural

fixed mode is structurally controllable under structural stresses

and an unsteady control can suppress it (see ch. VI).

The drawback of Sezer's and Silajk's characterization (from

the standpoint of a numerical test for the existence of such a

mode) is the necessity of finding a permutation matrix P, which is

not the case for a characterization by sensitivity analysis.

Pichai et al (PIC-83b) provided an algorithm for hierarchically

breaking down a system into subsystems accessible by inputs and

outputs, based on graph theory notions, and that can be used in

searching for matrix P. This algorithm does not give just one

solution and and is not valid in all cases. Note that by using

the structural sensitivity matrix, the state set X2 (see eq.

4-4-1) can be easily found by using the structural sensitivity

matrix, and the partition of the control and observation stations

can therefore be determined, into two aggregated stations. It is

therefore possible to also determine the set of sufficient matrix

elements K to suppress type i structural fixed modes (see ch.VII).
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CHAPTERV - GRAPHIC CHARACTERIZATIONOF FIXED MODES

I. INTRODUCTION

In this chapter, we shall present the currently existing

graphic methods for characterizing fixed modes. The use of graphs
gives certain advantages, among which:

.Use of qualitative properties of the system,

.Binary type numerical calculations more adapted to a computer,

.Use of already existing results and algorithms of the graph
theory,

.The use of graphs makes it easier to consider general structural

stresses (see II.4.5).

The graphs used are directed ("Directed graph = digraph") and
have the following elementary components: peaks, arcs, loops,
paths and circuits.

/80

Definition 5-1-I Graph Components

PEAK

ARC

LOOP

PATH

SOURCE

WELL

CIRCUIT

:The points on a graph are called peaks

:A line joining two peaks

:An arc whose origin and end are indistinguishable

:A series of adjacent arcs used for passing from one peak

to another

:The initial peak of a path is called source.

:The final peak of a path is called well.

:A path whose source coincides with the well (closed

path). A path or circuit is called:

ELEMENTARY:if it passes only one time by each of its peaks

SIMPLE :if it passes only one time by each of its arcs.

Many algorithms are found in literature for determining the

paths or circuits of a graph, among which: (KRO-67), (KAU-68),

(SRI-79) and (KAR-84).
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CHARACTERIZATIONUSING ELEMENTARYCIRCUITS

Let's look at system (2-4-4) which has distinct modes and a

transfer matrix G(s) E Rpxm. Let F be the matrix representing

the structure of the acceptable control, i.e. (j,i) E F if

kij = O. The directed graph DF = (VF, EF) is

associated with the system and with F and its peaks VF and

arcs EF are partitioned as follows:

V F _ VIFU V2F and EF A= EIF U E2F

with VIF _ {i : (j,i) ( F _r a certain i} '

V2F_.{J : (j-re,i) G F for a certain j} }'I

EIF {(i,j) : (i,j) _ VIF x V2F , Gj_m,i(s) _ O ',

E2F _ {(i,j) : (i-re, j) C F}

where m is the number of inputs of the system and Gj_m, i is

the transfer function between the i-th input and the (j-m)-th

output. Each graph peak represents an input or an output, and

each arc represents a nonzero transfer function or an enabled

output-input connection (enabled feedback). A transmittance

ti,j(s ) is associated with each arc (i,j) E E F according

to the rule:

=[Gj_m,i(s) if (i,j) _ EIF

ti,j(s)
if (i,j) _ E2F

/81

and the transmittance of a path T is the transmission product

ti, j of the arcs forming T. With these definitions Locatelli

et al (LOC-77) characterize the fixed modes using the following

theorem:

Theorem 5-2-I (LOC-77)

so is a fixed mode of system (2-4-4), with simple modes,
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with respect to the control structure F if and only if so

is not a pole of any elementary circuit of graph DF associatea

with the system.

This characterization is simple to use, and makes it easy to

consider a general control structure. It may also be used to

distinguish between two types of fixed modes: so is a

nonstructural fixed mode if s o is both a zero and a pole in

the transmittance of one of the elementary circuits (pole-zero or

zero-pole simplification), and it is structural if it does not

belong to any typical transmittance polynomial of the elementary

circuits of the graph. The drawback of this oharacterization is

that it is valid only for systems with simple modes. It therefore

must be expanded to cover any system.

Example 5-2-]

c; c_+4
Let us reexamine example (3-4-1) whose modes were {a,3,b,-

2

F = {(1,1),(2,2),(3,3)}

VIF ={ 1,2,3}

V2F ={ 4,5,6}

EIF ={ (I,5),(2,4),(2,6),(3,6)}

E2F ={ (4,1),(5,2),(6,3)}

4i2 5

3 6

};

The associated graph D F is given by figure 5.1.

contains two elementary circuits which are:

(_) 1_5_2_4-11with transmittance 1

Q3-6-3 with transmittance t2 -

S-C

(s2-cs-1) (s-a)

1

s-3

It

The mode s=b is a structural fixed mode of the system because

it does not belong to any typical polynomial of the elementary

circuits of the graph. If a=c, the system will have a

nonstructural fixed mode due to the simplification in the

transmittance t i.
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V.3 CHARACTERIZATION USING GENERALIZED CACTUSES

A directed graph Ds=(V,E)=(U U XU Y, E) is associated with the

system (C,A,B) of (2-4-2) described by its state equation.

The graph peaks V correspond respectively to inputs U =

{u1,...,Um} , to states X = {x1,...,x n} and to outputs Y =

{YI,..., Yp}. E is the arc set (Vj,Vi) directed from peak Vj

to peak Vi, arcs (xj,xi) and (xj,Yi) E E if and only if aij

O, bij _ 0 and cij _ 0 respectively. In this section

the following special subgraphs are defined:

/82

Definition 5-3-I (SIL-82b, PIC-83a)

1) INPUT PATH: this is either a path starting from an input

peak (source) toward a state peak (well), or an input peak. It

does not contain any output peak.

2) OUTPUT PATH: this is either a path starting from a state

peak (source) toward an output peak (well), or toward an output

peak (source). It does not contain any input peak.

3) INPUT-OUTPUT PATH: this is a path beginning from an input

peak (source) toward an output peak (well).

4) STATE PATH: this is a path between two state peaks, or a

single state peak. It does not contain any input or output peak.

5) CIRCUIT: already defined.

6) INPUT CACTUS: this is an input path with at least one

state peak; the source and input cactus well are those of the

input path. An input path connected to an elementary circuit is

also an input cactus, except if it is connected to its well.

7) OUTPUT CACTUS: it's definition is similar to that of the

input cactus.
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8) CHAIN: this is a group of disjoined circuits connected

together in a sequential manner, or a single circuit.

9) CONNECTION: this is an input path connected to the first

circuit of a chain (but not to its well), an output path connected

to the last circuit of a chain (but not to its source).

Figure 5.2 illustrates the different subgraphs given above:

(I) an input path (2) an output path

(3) an, input-output
pa_n

(4) a state path

©
(5) circuit

(7) output cactus /

 tus /
(8) ch_tn (9) cactus

Fig. 5.2 - Special Subgraphs
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Definition 5-3-2 (PIC-83a, SIL-82b) Generalized Cactus

A generalized cactus is defined as one of the following

directed graphs:

i) The union of one (or more) input-output path(s) and an

equal number of state paths, plus several possible circuits, input

paths and output paths.

ii) The union of connections with (or without) several

circuits, input paths and output paths.

iii) The union of input and output cactuses.

Picahi et al (PIC-83a) (SIL-82b) characterize structural

fixed modes by the following theorem:

\

Theorem 5-3-I ( _83a)

The system ,_-_-2) with N control stations has no structural

fixed modes with respect to the F control structure if and only if

the directed graph associated with each complementary subsystem

(def. 2-4-7) is not a generalized cactus. /84

Picbai et al (PIC-83A) (SIL-82b) give an algorithm (for

details on the algorithm, see (PIC-83a) or (SIL-82b) to test a

graph made up of generalized cactuses. The algorithm must be used

to test for the existence of structural fixed modes of a system

with N control stations, for all complementary subsystems, i.e.

2N-2 times. Consequently it leads to many binary

calculations, in particular for a large system (large N) and this

test is therefore impractical.

V.4 CHARACTERIZATION USING THE PROPERTY OF BEING HIGHLY

CONNECTED

The system (2-4-2) and the set of control matrices KF are
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taken into consideration. Given D = (V,E) the directed graph

associated with the system and defined in the previous paragraph.

If control KF is applied to the system, then the arcs

corresponding to graph D S are added. The graph associated

with the closed loop system D F becomes or EF

are the arcs corresponding to control KF, i.e.:

(Yj (kf)ij '_EF ={ , u i) : _ O; i=l,...,m; j=l,...,p} _'

Linnemann (LIN-83) et PIchai et al (PIC-84) characterize the

structural fixed modes with the following theorem:

Theorem 5-4-1 (LIN-83, FPIC-84)

The system (2-4-2) has no structural fixed modes with resepct

to control structure KF if and only if the following conditions

are proved:

i) Each state peak, x i E X i=1,...,n, belong to a highly

connected component of the graph associated with system DF. The

component should contain an arc (yj, ui) £ EF."

ii) Disjoined circuits ev_s+,,, _, ct = (v. t' Ei_" __=1_,,,,,q

D F such that:

XC U V1
..i=l

in

This characterization uses the graph associated with the

closed loop system, it is simple to use and makes it possible (see

ch. VII) to determine an optimum control structure without fixed

modes.

Example 5-4-1 /85

Given system (3-3-1), the graph associated with D F is

given by figure (5.3a).
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I

A
I

i I

fig. 5.3a

I I

i i
J I

fig. 5.3b

Figure (5.3a) shows that x3 is not contained in a highly

connected circuit and the corresponding mod_ is therefore a type i

structural fixed mode. Conversely, the system has no type ii

structural fixed modes because disjoined circuits exist in the

graph that contain all states (fig. 5.3b). If b = 0 we have a

type ii structural fixed mode (fig. 5.3b) that proves condition i

of theorem (5-4-I) (fig. 5.3a).

V.5 CHARACTERIZATION USING CIRCUIT FAMILIES

The square matrix M(s) with the following dimension (n+m+p)

is associated with system (2-4-2):

M(s) = A-sl

K F 0

We have a directed graph D(M(s)) = (V,kE) with {n+m+p) peaks

corresond to this matrix. Shown are output peaks notated Yl,-.-,

yp, input peaks notated Ul,... , um and n state peaks

notated Xl,...,x n. If element mij of M is not zero, arc

(j,i) E E is directed from peak j to peak i and its weight is given

by mij.
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Definition 5-5-I (REI-83A) (REI-84a) Circuit Family /86

The circuit set with disjoined peaks is called a circuit

family. It is characterized by its dimension. The family weight

is the weight of all arcs in the family, and the dimension nx of

a family is given by the number of state peaks belonging to the

family.

With these definitions Reinschke (REI-83) (REI-84a)

(REI-84Ab) proposes a fixed mode characterization, based on a

graphic interpretation of the factors of the typical closed loop

polynomial given by the following theorem:

Theorem 5-5-1 (REI-84a)

The coefficients a i 1 _ i _ n of the typical closed loop

polynomial:

sI_A_BKF C n n-i n-i
det( ) = s + a I s + ... + a I s + ...+ an_ 1 S+an

(5-5-I)

are determined by circuit families of dimension i of graph D(M(s=O)),

each circuit family of dimension i corresponds to a term a_ of the

sum a_ = _ aJ the numerical value of this term is given by the

weight oJf the corresponding circuit family, and its sign is given by a

sign factor equal to (-1)d where d is the number of disjoined

circuits of the family under study.

In particular:

al:

a2:

is obtained based on all circuits of dimension 1, and

the sign factor is equal to (-I).

is obtained from all circuits of dimension 2, each with

a factor whose sign is equal to (-1), and all pairs of

disjoined circuits of dimension I, each with a sign

factor equal to (+1). 109



a3: is obtained based on all circuits of dimension 3 (each

with a sign factor equal to (-1), all pairs of a circuit

of dimension 2 and a circuit of dimension 1 (each pair

has a sign factor equal to +1), and all triplets of
disjoined circuits of dimension 1 (each triplet has a

sign factor equal to (-i).

Using theorem (5-5-I) Reinschke (REI-83) (REI-84a)

characterizes the fixed modes with the following theorem:

Theorem 5-5a-2 (REI-84)

so is a multiple fixed mode of order h of the system with

respect to control KF if and only if for j = n, n-l,..., n-h+1

(j_n-h) one of the two following conditions is verified:

i) There is no circuit family of dimension j in the graph

D(M(so)).

ii) There are two (or more) circuit families of dimension j

in D((M(so) ) which numerically simplify each other for

all permissible values of the control matrix.

/87

Reinskhe (REI-84b) showed that for type ii structural fixed

modes (at the origin), it is condition i that is verified. In

general, it is possible to determine whether a structural fixed

mode or nonstructural fixed mode is involved, and if this is the

case to determine the conditions for which the system has

nonstructural fixed modes by calculating the coefficients an

of the typical polynomial.

Example 5-5-1

Given system (3-3-I), with a = 2, b = 4 and c = 1. graph

G(M(s)) corresponding to matrix M(s) (for an unspecified s and a

decentralized control K = diag (kli ' k22 ' k33) )

associated with the system is given by figure (5.4).
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In graph G(M(s)) there are six circuit families of dimension

5 that are given by table (5.1).

The typical polynomial of the
-- s

system is @(s)= (s-2) (s-4) (s-3)

i 1 1 (s2-s-1). If we consider s = 4,

all families of Tab. 5.1 are reduced
k k22 to families of dimension 4, then s = 4

i _ I is a fixed mode. For s = 2, families
I- G' (_)'Q & (_disappear and we

ihave two families of dimension 5 that

give coefficient a 5 of the typical

Ip(_lY5n_ial of a closed loop system

• 4- 1 a 5 = kll k22 (1-2) (4-2) (3-2+k22) =/
1 1 '

_ k_3_... _. - 2 kll k22 (1+k33) _ 0

Fig. 5.4 (Graph G(M(s))

" •0

(_-,o=

,P
}-I 4- -s

sqr,; (-)

0 0 0 ® ©
I

P
Z-S

k I I
111 _'_ Ikzz

!
I I

kll I _ Ik22
! i-s(-J_" I

4*S

(-) I+) 1*) 1+) I+)

Tab. 5.1 - Circuit Families of Dimension 5

of Graph in Fig. 5.
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therefore s = 2 is not a decentralized fixed mode of the system.

If the numerical values of A, B and C are replaced by arbitrary
elements, we have:

a5 = (a33-s) {a15 a51 (a44-a) + bll c21 k22 b42 c14 kll (a55-s) }b25 c33 k33

this factor is zero if s : a33 (¥ all , blj Q cijL__S:is therefore a

structural fixed mode) or if a44 = a55 (the equality

between elements a44 and a55 of A reveals a nonstructural

fixed mode in s = a44 = a55 ).

V.6 COMMENTS

The graphic characterizations shown in this chapter use a

graph associated either with a closed loop system (PIC-83a), or a

closed loop system (L0C-77) (LIN-83) (PIC-84) (REI-83).

Pichai et al°s approach (PIC-83a) using a graph associated

with an open loop system, consists of testing the properties of

2N-2 graphs associated with complementary subsystems of the

system. Consequently, there are many binary calculations and the

computer time is long. This test is im _rti ._....pr_ ca! and is only v_lid

for structural fixed modes.

/89

The approach using a graph associated with a closed loop

system is more interesting that the preceding one, because it

shows an overview of the system. The available methods are broken

down into two groups depending on whether the graph associated

with the system either:

-By its transfer matrix (a peak represents an input or an

output). The only available melthod in this group is that of

Locatelli et al (LOC-77); it is very interesting and simple and

may be used to specify the origin of the fixed modes, but it is

only valid for systems with simple modes. This method deserves

to be expanded to cover all cases.
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-By its state equation (a peak represents an input, a state

or an output) (LIN-83) (PIC-84) (REI-83). Linnemann's (LIN-83)

and Pichai et al's (PIC-84) method is simple, purely graphical,

but it is only valid for structural fixed modes. Reinschke's

method (REI-83) is general, valid for mode types, but requires

considerable calculations.

Note that the closed loop approach makes it easier to include

any control structure.

CHAPTER VI - STABILIZATION OF DECENTRALIZED SYSTEMS IN THE

PRESENCE OF FIXED MODES

Vl.l INTRODUCTION

We have shown in previous chapters that fixed modes may be

structurally controllable or structurally uncontrollable under

structural stresses. The appearance fixed modes that are

controllable in a decentralized manner is either due to the

perfect inequality of certain system parameters or to the

multiplicity of the modes (nonstructural fixed modes), or because

the position of the mode at the origin makes it independent of the

system parameters (type ii 2 structural fixed modes). However

the existence of structurally fixed modes that are uncontrollable

under decentralized conditions is due to the lack of information

transfer between the subystems (type i and iil structural fixed

modes).

In this chapter we shall focus on the stabilization of systems

with fixed modes that are structurally controllable under

structural stresses, and show that it is possible to stabilize the

system while maintaining the stress over the structure by changing

the control structure. This is an essential difference between

centralized and decentralized fixed modes. In effect, when the

system has a centralized fixed mode (uncontrollable and or

unobservable mode) in so, then for any control law used (linear

or not, dynamic or not, distributed or not, of finite dimension or

/92
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not) the fixed mode will remain in that the feedback of the closed

loop system will always have a term proportional to exp

(So(t) . However Wang and Davison (WAN73-b) showed that a

decentralized fixed mode remains so, even when using a dynamic

control. Furthermore, Kobayashi (KOB-78) and Anderson and Moore

(AND-81b) showed that a general control law in the form:

ui(t) = K. (I (t)) i=I ,N (6-i-I)l i _''"

where li(t ) = {Yi(q), ui(r); q E [o,t] and r E [o,t]}

is the information available at station i, may stabilize systems

structurally fixed modes that are controllable under decentralized

conditions in the sense that this law (6-1-1) may transfer the

system from an initial state to the origin in a finite period of

time, because the highly connected property of the system transfer

matrix allows a control station to transfer information through

the state space to another station by using signalling strategies

(KOB-82).

Consequently, system stabilization in the presence of

structurally controllable fixed modes is feasible if one of the

properties of linearity or invariance with time is sacrificed.

Th,: ,=:u,_ is =asy to Interpret ,Jsi-_.._A-d:_:on':.... _ .. . flx_d.. ........mndp

characterization (AND-82) (see III.4.6). For simplification, let

us consider a system with two single input/single output

subsystems:

C(s) = Ii 1(s) g12 (s)]

21 (s) g22(s)J

(6-I-2)

By applying a control u2 = k2 Y2 to the 2nd

subsystem, the transfer function seen from the first station is:

Yl(S)

u1(s) - gl1(S) + g12(s) •
k2

1-g22(s)k 2 " g21(s) (6-I-3)
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If so is a simple mode of the system, theorem (3-4-11)
shows that a fixed mode decentralized in so appears if and

only if g12 has a pole in so and g21 has a zero in

so. In other words, the appearance of a simple fixed mode is

due to the zero-pole (or pole-zero) simplification in product
k 2

g12 I-g22 k2 g21" However if k2 is not linear or is time-variant, /93

then this simplification is no longer feasible, since a time-variant

block and an adjacent invariant block cannot be switched. Thus

there is no longer any juxtaposition of a pole-zero pair that are

simplified together. In the case of a multiple mode the simplifi-

cation is done between a g12 (or g21) pole and a

k 2

g22 pole (i_g_k2)zero),__, using a time-variant control also

prevents this simplification and makes stabilization feasible.

Note that if one of the transfer functions between stations is

zero (block-triangular transfer matrix), then the system is

structurally controllable under the structural stress, and the

only way to control it is to relieve the stresses on the control

structure (see ch. VII).

The systems considered here have N stations and are described

by (2-4-1) or globally by (2-4-2).

VI.2 USING A SAMPLING/BLOCKING UNIT

Let us consider system (C,A,BO of (2-4-i) and let us put a

sampling-blocking unit, of order a _ 0 and with a sampling

cycle T, in a row at the input of each system station. The

resulting discrete system is:

,_i th

N

X((k+l)T) = Q X(kT) + Z R i ui(kT )
i=l

yi(kT) = C. X(kT)I

Q = exp (AT) T

R. = exp (- aT) f exp (A+al)dt B.
i i

o

(6-2-I)
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The decentralized fixed modes of the discrete system (6-2-1)
are given by (WAN-82):

C_ a(Q + N

z (6-2-2)K. E Rmixpi i=_l C. KiRi)
I

Theorem 6-2-1 (WAN-82)

System (2-4-1) is stabilizable by local discrete controls if

a sampling period T and a real a such that the fixed modes of the

discrete system (6-2-1) are in the unity circle.

Wang (WAN-82) thus proposes a sufficient condition for the

existence of a decentralized discrete control, but he does not

provide any constructive procedure for characterizing the sampler

(T and a). All that we know is that the sampler should be of a

general type (a _ 0), i.e.:

u(t) = exp { -a(t-kT)} u(kT) kT _ t < (k+l)T

as a zero order blocking unit may be insufficient, particularly if

the fixed modes are at the origin (see remark 1 in WAN-82).

Note that the use of a discrete decentralized control for

stabilizing the system is valid only if the fixed modes are

pl _r _ m_ of +ho +omsim e: let us assume that s o ,o a fix_ ,,,v_e ,. :v:

if s o is simple, the transfer functions of the local

subsystems do not have a pole in s o and therefore by

quantifying the inputs of the complementary subsystems (g12

and g12 see 6-I-3 and fig. 3.2b). If s o is multiple then

one of the transfer functions of the local subsystems (gll or

g22 see 6-i-3) has a pole in s o (AND-82), and therefore

the simplification is done between a pole of one of the

complementary subsystems (g12 or g21) and a pole of one of

the local subsystems (gll or g22). The quantification no

longer prevents simplification and the discrete system will always

have a fixed mode in So, see fig. 6.1.
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I 7 g11
- g21 1-g22J2
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t_ , j

rl
I

g12

simplification fixed mode

Fig. 6.1 - Quantification of System Inputs

Multiple Fixed Mode

Yl

VI.3 USE OF A TIME-VARIANT CONTROL

This section shows Anderson's and Moore's results (ABND-81b)

and Purviance's and Tylee's results (PUR-82) which use a

decentralized control, variant with time, for stabilizing the

linear time-invariant systems, in the presence of fixed modes.

First, let us show a special case of systems with two stations,

then let us briefly discuss how we can apply Anderson's and

Moore's results to the general case of N subsystems.

The system is considered to be controllable and observable

with two control and observation stations:

/95

o

X(t) = A X(t) + B1 Ul(t) + B2 u2(t)

Yi(t) = C. X(t) i=1,2
i

m. pi I
where x E R n i

, ul c R & yi( R . Let us apply a time-variant control,

(where time is periodic with period T) to the 2nd station:

u2(t ) = K2(t ) Y2(t) (6-3-2)

we obtain:

o

X(t) = A + B2 K2(t) C2 + B1 u1(t )

Yl = C1 X(t)

(6-3-3)
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Let @K (t,s) be the transition matrix of the looped
system (6-3_3), then the observabililty and controllability

systems are:

s+T

_K 2 T CI 0K2(t,s) dt (6-3-4)
GO(s,s+T) = f T (t,s) C I

$

s+T

GC(s,s+T)= f
$

_K2(S,t) B I BIT _TK2(S,t) dt
(6-3-5)

The system is said to be uniformly controllable (observable)

if the controllability system GC(s,s+T) (observability G0(s,s+T)

is strictly defined to be positive. Satisfaction of the uniform

controllability and observability properties implies that

stabilization of a closed loop system (6-3-3) is possible by a

linear state feedback.

VI.3.1. Piece-Wise Constant Control

Anderson and Moore (AND-81b) propose the use of a

time-variant control that is periodic, piece-wise constant for

stabilizing decentralized systems in the presence of fixed modes.

With the assumption of overall controllability and observability

and the assumption of the highly connected property of

complementary subsystems, i.e.:

G12(s) = CI(SI-A)-I B 2 _ 0

G21(s) = C2(sl-A)-i B 1 _ O

(6-3-6)

(6-3-?)

they propose the following theorem in the form of two lemmas:

Theorem 6-3-1 (AND-81b)

Given system (6-3-1) (controllable and observable), then it

may be made uniformly controllable and uniformly observable for

station 1 by applying a time-variant control to station 2:

u2(t ) = K2(t) Y2(t), or K2(t) is periodic, with an

arbitrary period, and piece-wise constant taking at least I + max

(m2, P2) distinct values in one period.
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Note: the assumptions required by the theorem are equivalent to

the assumption of structural controllability and observability

under decentralization stresses.

This result is analyzed as follows: when the fixed mode is

due to a lack of observability from station 1, station 2 observes

the fixed mode (overall observability assumption) and the return

to station 1 through transmission channel G12 _ O. When

the fixed mode is due to a lack of controllability for station 1,

then G21 transfers the controls from station I to the input of

station 2. Thus these signals assign modes that are not directly

accessibly by station 2 (see fig. 3.2).

Anderson and Moore apply their study to the case of system

with N stations. They show that with the assumptions of highly

connected complementary subystems Gij _ 0 (structurally controllable

observable system under structural stress), the system can be

made controllable and observable by a station by successively

applying time-variant controls ui(t ) = Ki(t ) Yi(t) i=2,...,N. Each

control Ki(t ) is periodic, with period T, and piece-wise constant.

For each station i, there are as many invariant systems to consider

as there are distinct Ki_1(t ) values, which gives a gain Ki(t )
i

taking at least J-_2 max (mj,pj) + I distinct values in a period

This rapidly increases if systems with a large number of stations

are considered, and if it is taken into account how difficult it is

to implement such a control.

Example 6-3-1 (AND-81b)

Let us consider the following controllable and observable

system (with two stations):

x = 1 x + u. + u-
o 2

[oi o]Y2= 0 0 X
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= 1.

u2(t ) : K2(t) Y2(t) with:

[o I] for

K2(t)" {

[I o]

The system has a nonstructural decentralized fixed mode in s

let us apply a control, variant with time, to station 2:

t E [2k, 2k+1]

for t _ [2k+l, 2k+2]

k=0, 1,2, ...

We obtain the following in a closed loop:

X(t) = A + B2 K2(t ) C2 X(t) + B1 Ul(t)

Yl(t) = C1 X(t)

The controllability and observability properties of a closed

loop system, calculated analytically on interval [2k, 2k+2] for

k=0,I,2,.., are defined to be positive with a conditioning number *

of 6 and 100 respectively. We therefore obtain a reasonable

controllability. However, the observability may be improved by

selecting another type of time-variant control, as we shall see in

the next section.
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VI.3.2 Sinusoidal Control

Purviance and Tylee (PUR-82) considered the special case of

systems with two single input/single output subsystems, having a

decentralized fixed mode. They offset the lack of observability by

station 1 (cause for the existence of a fixed mode) by

communicating to this station the fixed mode value (which is

observable from station 2) through the transmission channel G12,

via a time-variant feedback K2(t ). This is a well known theory

of communication problem, and a good solution is to use sinusoidal

modulations, with a frequency comparable to the response frequency

of the communication channel G12 (VAN-68).

*The conditioning number (CN) of a rectangular matrix Q of fuTT

rank is given by the ratio between the highest and lowest singular

value of the matrix (M00-81). CN is a good measurement of the

robustness of rank Q. If CN = I, the effective rank of Q is equal

to the nominal rank ...[page cut off].
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Example 6-3-2 (PUR-82) /98

Let us consider the following system with two inputs and two

outputs:

G(s)

I s
0 I (s+1) (s+2)

I

, 0
i

It is clear that the system has a type ii structural decentralized

fixed mode. let us apply a sinusoidal control u 2 = k sin

The conditioning number of the matrix of the observability

property of the looped system is given by figures (6.1a) and

(6.1b) for two k amplitudes and different values of frequency

z

¢J

500

250

! I • w

1 mc2 3 b,

frec{uencv _ (tad/s)

(a) k = 0.05

s°°! ' ' ' ' I

0 • , e • • •

0 1 "_2 3 W

_i:r_c[_ncf _o( rad/s )

(b) k = 1

Fig. 6.1 - Conditioning Number

of Observability Matrix of Example 6-3-2

I
Note that for _= m = _r2"(mcliS the center frequency of theC

passband filter G12 through which the transmission is done). An

optimum communication can be expected between the two stations.

The conditioning number of the observability property is minimum

for k = 0.05 (for t = 100, 6.1b gives CN z 400), which shows

the significance of the energy selected of the signal to be

transferred through the feedback loop. Actually, an increase in

this energy destroys the balance between the modes of the system

and this leads to a high conditioning number and therefore to poor

observability.

To compare with Anderson's and Moore's result (AND-81b), let
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us apply a periodic control, of period 2, piece-wise control to

the 2nd station with:

=_o o _ t • I
K2(t) 1i 1 _t •2

The conditioning number of the observability property

GO(IO0.O) is equal to 132.9.

/99

In short, use of a sinusoidal control (low-energy) for this

example decreases the conditioning number of the observability

property by 54% relative to the binary control proposed by Anderson

and Moore. This therefore provides better observability. Similar

results are obtained for controllability.

VI.3.3 Comments

Using a time-variant decentralized control, we showed that

fixed modes, structurally controllable under decentralization

stresses, can be stabilized. The advantage of this approach is to

keep a decentralized structure of the control. The difficulty in

making piece-wise constant controls makes them impractical in

practice, which is not the case of the sinusoidal control, but the

results available for this approach cover only a simple two system

single input/single output case. These results must therefore be

applied to the case of N control stations, a case which is of great

importance for practical applications. Such a study will be

presented in the next section using the "vibrational control".

Vl.4 USING A VIBRATIONAL CONTROL

Meerkov (MEE-73) introduced the principle of vibrational

control in 1973, and showed that by introducing vibrations in the

parameters of a system, it is possible to stabilize the unstable

modes of the system for which traditional control methods (output

or state feedback, anticipation) are not applicable because

measurements of the system are lacking (unmeasurable variable or
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variable difficult to measure).

In effect, the advantage of a vibrational control over a

traditional control is that it does not require measurements on

the system, because it simply consists of introducing high

frequency vibrations into the dynamic matrix of the system. These

vibrations do not depend on the state (no feedback) any more than

on additive control signals (no anticipation), but depend only on

time.

If we consider a structural stress on a control as a lack of

measurement at the local level, then it seems conceivable to use a

vibrational control to stabilize the unstable fixed modes of the

system when a traditional control fails.

VI.4.1. Principle of a Vibrational Control /100

A vibrational control consists of introducing vibrations

(oscillations), with a zero mean value, on the system parameters,

to modify its dynamic behavior in the desired direction,

particularly to stabilize it. These vibrations are directly

introduced into the dynamic matrix of the system by oscillating

the technological parameters of the system (for example by varying

the amplification factors). This control does not require any

measurements of the system (no need for control or observation

matrices). Accordingly the synthesis of the control appears in

the same way as for systems whether or not they are

self-contained.

Let us assume that we have a linear, self-contained system

that is time-invariant:

X(t) = A X(t) A =I[ aijl a_I%d X E R n (6-4-1)
,j=1

Let us introduce periodic vibrations into the system that have a

zero mean value and expressed as follows:
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v(=)= llv±j(t>ll" (6-4-2)
i,j=l

with vii(t) = qi] sin rijt

:Me obtain: :
O

x(t) = [A + v(t)] x(t)

ri] _ rsL for i] _ s_

(6-4-3)

Before analyzing the time-variant system (6-4-3), a question

is posed: When can a vibrational control be applied?

Definition 6-4-I (MEE-80)

The system (6-4-1) is said to be stabilizable vibrational if

a periodic matrix V(t) with a zero mean value exists such that

system (6-4-3) is asymptotically stable.

Theorem 6-4-I (MEE-80)

It is assumed that a line vector c exists so that the pair

(c,A) is observable. Therefore a necessary and sufficient

condition for system (6-4-1) to be vibrationally stabilizable is

that the outline of its dynamic matrix is negative (Tr A < 0).

An analysis of the time-variant system (6-4-3) is based on

Volosov's (MEE-73) (MEE-80) procedure for finding the mean value

which imposes certain conditions on the vibrations matrix V(t)

(quasi-triangular structure)*, sufficiently large amplitudes and

frequencies** and provides the invariant system

0

Z(t) : [A + V] Z(t) (6-4-4)

where _ is a constant matrix dependent on the vibrational

amplitudes and frequencies). This system (6-4-4) describes the

variant system (6-4-3) "on the average", if the system (6-4-4) is

stable, system (6-4-3) will also be stable. The parameters of the

invariant system (6-4-4) depend on the qij, rij and aij ;

_-_ecause we _b not _now how to-anaTyze-t_e system if V(t) has

another structure (MEE-80).

**See theorem (6-4-2).

/101
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using the stability criteria of invariant systems (Routh's

criterion for example) the stability conditions of this system

can be determined and therefore the amplitudes qij and

frequencies rij of the vibrations V(t) that stabilize the

variant system (6-4-3).

Given the lower (or upper since we can go from one to the
other) quasi-triangular vibrations matrix:

v(t) =

b

q21 sin r21 t

q31 sin r31 t

qnl sin rnl t

0

q32 sin r32 t 0 0

-...... -,,,

• . . .,.

qn2 sin rn2 t) ............. qn,n-I

0

sin r
n_n-i

t 0

(6-4-5)

Matrix V (and therefore the invariant system (6-4-4)) is

determined as follows:

Let us consider the system of differential equations:

0

X(t) = V(t) X(t) X _ R n
(6-4-6)

I
where V(t) is defined in (6-4-5). Let us assume that the inltlal

conditions of (6-4-6) are given by: x.(t ) = x°. i=I ..,,.
__! 0 I _"

Therefore the solutions of the first two equations of (6-4-6) are:

x:(t)= x_

x.(t):x_÷[F21(t)-F2:(_o)]x_

where F21 (t) is a periodic function of the zero average time.

Now let us determine the solution of the 3rd equation of (6-4-6) by

letting F21(to) = O. A similar procedure is applied successively to,

solve the remaining equations of (6-4-4).

following while solving equation i:

k-i o

x_:_ ÷ : [_j(_) -%(to)]_j
j=l

If we find the

k=l, . . . ,i-I
/102
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then the solution for equation i of (6-4-6) is determined by

substituting

k-1

xk = x_ + Z Fkj(t) xo.
j=l J k=l,...,i-i I

We therefore obtain the matrix F(t) = llFij(t)llni,j=lwhere Fij(t )

are periodic zero average functions. Let us define matrix E so that:

if2
E = IIeijlln and eij = lira _ Fij(t) dt (6-4-7)

i,j=l T÷ ® o

Let us note that matrix E has the same structure as as V(t).

Finally, matrix V of equation (6-4-4) is given by:

V = - (ATe) E ) (6-4-8)

where (_) represents the element by element multiplication of matrices

A T and E, i.e.:

Vii = _ aij •eij

Theorem 6-4-2 (MEE-80)

Constants Qo and Ro exist and they are large enough so

that if qij >> Qo and rij >> Ro a for each i,j, the X(t)

solutions of (6-4-3 and 6-4-5) and Z(t) of (6-4-4 and 6-4-8)

(defined with identical initial conditions X(o) = Z(o)) are related

by the expressions:

_(t) = [ I + F(t)J Zft)

I

IIx( >- 7( >lj<

t( [o,-[

(6-4-9)
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where I is the unity matrix and F(t) the matrix calculated by the

preceding procedure. If system _(t) =[(A+_)]Z(t) is asymptotically

stable, relation (6-4-9) is verified for t E [0,_[; otherwise it

is verified only for t E [0, Qo[.

The theorem shows that if the vibrational amplitudes and

frequencies are high enough, then system (6-4-4 and 6-4-8)

describe on the average the trajectories of the time-variant

system (6-4-3 and 6-4-5) and therefore all properties of the

system (6-4-4 and 6-4-8) are on the average true for the time-

variant system (6-4-3 and 6-4-5). In particular if (6-4-4 and

6-4-8) is asymptotically stable then (6-4-3 and 6-4-5) is also

stable.

According to (6-4-8), it is evident that the vibrations only

have an effect on the system dynamics if V _o . Otherwise, the

dynamics of the variant system (6-4-3) is the same as the dynamics

of the invariant system (6-4-4). Thus the vibrationally controllable

elements aij of A are those for which i > j and aij _ 0 (for

the selection of the lower triangular form).

Since the introduction of vibration deds makes the technological

parameters of the system oscillate, the introduction of vibrations on

zero elements of matrix A is not technologically

feasible. Consequently, vibrationally controllable elements aij are

nonzero elements aij # of A for which i > j and aij _ O.

Remarks:
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1 - To establish an analogy between a vibrational control and

a traditional control, note that the introduction of vibrations

V(t) on system elements has a similar effect to the output feedback

control characterized by V = BKC, or to a time-variant output

feedback control and characterized by V(t) = B K(t) C.

2 - In some cases (see MEE-73), we can relief the stresses on
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the vibrational amplitudes, i.e. not account for a "high enough

qij condition" and be content with small amplitudes.

3 - If the system is not self-contained, the stabilization

method using a vibrational control does not differ from that of

the self-contained systems described above. Given the following
O

system: x A X + B U X E Rn_- , U E Rm. It is assumed that the system

controls are slow functions of time in that _l is limited. In
dt

this case, the following supplementary condition must be added to

the vibrations frequency:

du

rlj >>max (sup-_t ) i,j=l,...,n '& £=I,...
,m.

4 - A calculation of the V elements involves the integration

of trigonometric terms that are difficult to develop. In the

special case where we have a single element vibrationally

controllable per line in matrix A, then the calculation becomes

relatively simple. In this case we have:

vij(t) = qij sin ri] t

whZch give_:" 2

e.. ----. --_

2
ij 2 rij

and :

_ij = - aij •eij

2

qij

Fij(t) - -_/ cos r t
rij IJ

(6-4-I0)

VI.4.2. Stabilization Using a Vibrational Control /104

In this section we will consider the system class which has

unstable fixed modes with respect to a given structural stress and

whose dynamic matrix verifies the conditions of theorem (6-4-I).

Vibrations are directly applied to the self-contained system shown

below:

Example 6-4-1

Let us consider the following system with two subsystems:
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o [- 2 1 0

X= L 1 1 11 -1 -1

,_:C _ -_ o]

X ÷

X

X

U 1 + u 2

(6-4-11)

It is easy to check whether the system has an unstable

decentralized fixed mode in s=1. Given a self-contained system

associated with system (6-4-11):

O

X= 1 1 X

1 - 1 -

This system is vibrationally stabilizable, since for c = (1 0 0)

the pair (c,A) is observable, and Tr = - 2 < 0.

The vibrationally controllable elements are a21 and a32

if a quasi-triangular lower vibrations matrix is selected, or a12

and a23 if a higher quasi-triangular structure is selected.

Given in the first case:

v(t) =

0 0 0 1
q21 sln r21 _ 0 2 J0 q32 sin r32 t

To apply Volosov's procedure for establishing an average, let

us consider a self-contained system associated with vibrations:

O

X = V(t) X with X(o) = Xo

the solution of this system is given by:

Ist equation: x1(t) = x_

2nd equation:

with

0

x2(t) = q21 sin r21 t x_ I!

x2(t) = x_ + [F21(t) - F21(to) ] x_ 11

q21 'i
= - --cost r^ t

F21(t) r21 zI
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3rd equation:
O

x3(t) = q32 sin r32 t x2(t)

Let us replace x2(t ) by letting F21(to) = 0,

after integration we obtain:

x3(t) : x_ + [F32(t ) - F32(to) ] x_ + [F31(t)- F31(to) ] x_

q32

with F32(t) = - --r32cos r32 t

Let us determine matrix E (see 6-4-7):

2 2

1 _ sin 2 r21T q2______l
= lim _ F21(t) dt = lim q2__j__l{ + I} = 2

e21 T ÷ _ o T ÷ ® 2r_l 2 r21 T 2 r21

We obtain: : 2
q32

e32 - 2

2 r32

According to (6-4-8) we have

v21 =- a12 • e21 =

v32 = - a23 - e32 =

2
q21

-- -- e
2

2 r
21

2

q32
- e

2
2 r32

021 <

<0
32

(6-4-12)

this gives us the time-invariant system, which on the average

describes the variant system

O

" X : [ A + V(t)] X :

O

Z : (A+_) Z =

-2 1 O

i+_21 1 1

1 -I+V32 -I

Let us set the stability conditions of this system using

Routh's criterion:

3 2

det(sl-A-V) = s + 2 s - (I + _21 + _32 ) s - 2 - _21 - 2 _32

3 2

= a3 s + a 2 s + a I s + a°

The stability conditions are given by:

a. • 0 i = 0,1,2,3
i

aI a2 - a° a3 • 0

130



We therefore

obtain :
721< - 2 (1 + _32)

v21 < 0

Let us add conditions (6-4-12), we obtain:

V21 < 0

_32 < 0

V21 < - 2 (1 + V32)

The range D of acceptable solutions

is given graphically in figure 6.2

v21

- 1

- 2

Fig. 6.2

v32

Thus by selecting v21 and v32 6 D, the invariant system _=(A+V)z

is asymptotically stable and according to theorem (6-4-2), the

system _=_+v(t_x is on the average also stable. Note finally, that

the amplitudes and frequencies of vibrations (q21 r21' q32 & r32) I

should be sufficiently high.
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VI.4.3. Vibrational Feedback Laws

The dynamic matrices of the systems under consideration in

this section will not be directly vibrationally stablizable. To

stabilize this system class, we first wi]] apply a (state) output

feedback verifying the structural stress applied. This is to make

the closed loop system vibrationally stabilizable. Then we will

apply a vibrational control which stabilizes the closed loop

system. Given the following system:

0

X(t) = A X(t) + B U(t) (6-4-13)

Y = C X(t)

where A does not verify the conditions of theorem (6-4-i). Let us

apply a control U = KY such that K E K F (KF: matrix set

satisfying the structural stress applied), and such that the

closed loop system:

X(t) = (A + BKC) X(t) = D X(t) (6-4-14)
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is vibrationally stabilizable. Then we stabilize system

(6-4-14). If vibrations are introduced only on D elements

dependent on the kij elements of K, then the vibrational

control may be reduced to a time-variant (vibrational) feedback,

verifying the structural stress. This idea is illustrated by the

example below:

Example 6-4-2 (TRA-85a) /107

Given the following controllable and observable system with

two stations:

o 0 0
X = I 0

0 i X+ Ul +
0 0

/o°° °Yl = I o X
o o

o].
Given the following feedback matrix:

I k!l k12 k13 I 0 7K = 0 _-l-k_4-. ,.

o o Ik /
i 34.1

which gives in a closed loop:

°[iX=DX= k 1 io itl+k12 0 k

k24 i+k24

k34 k34

u2

(6-4-15)

It is easy to check whether the system has a decentralized

fixed mode in s=l, and the output feedback can therefore not

stabilize the system.

The open loop system is not vibrationally stabilizable (Tr LA

= 3 >), but we can apply a vibrational control to the closed loop

system (6-4-15) by selecting K such that:
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Tr D = 3 + k + k < 0

12 24

Elements d21 and d42 of D are vibrationally

controllable if k13 # 0 (for a lower quasi-triangular

vibration. Let us therefore introduce the following vibrations to

D:

v(t) =

q 0 0 0 ii

21 sin r21 t 0 0

0 0 0

0 q42 sin r42 t O

which gives the following matrix _ (see remark 4 of

section VI.4.1):

00 22q21

21 O 0 _21 - r212
O O

2

-k13_42 O - q42

v42 - 2

2 r42

> O

> 0

The time-invariant system which describes on the average the
0

variant system x(t) = [D + V(t)] X is:

0

Z = (D+V) Z

O 1 0 0

o _ii-_21 l+k12 0 k13

Z = 0 k24 i+k24 0 Z (6-4-16)

0 k34-k13_42 k34 1 j

The typical polynomial of this system is:

/108

with

det(sl-.D-V) = s 4 3 2
+ a 3 s + a 2 s + a I s + a

0

a 3 = - (3 + k12 + k24 )

a 2 = l+k12+(1+k24)(2+k12) + k13(k13_42-k34 ) + (_21-k11)

a I = - (l+k24){(l+k12) + k13(k13_42-k34 ) }+ (kll-_21)(2+k24) - k13k24k34

ao = (I+k24)v21-kll)
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To introduce the desired response to the "average" system

(6-4-6), we identify the coefficients of its typical polynomial

with the coefficients of the desired polynomial, i.e.:

det(sl-D-V) : (s+l) 4

which gives us: a 3 = 4, a 2 = 6, a I = 4 and a o = I

we have four equations and seven unknowns, let us therefore set

k24, k13 and_21.

k24 -3, k13 = I and = k I -= KII 1-v21

By solving the set of equations we have:

I 16 -- = O, 5
k12 = - 4, k34 =-_, v42 = -_- & KII = kll-V21

for _21 = 1 we obtain kll = 1.5.

Remark: since the vibrationally controllable elements are

elements of the feedback matrix K, the introduction of vibrations

to d21 and d42 is equivalent to adding vibrations to the

elements of matrix K and therefore the application of a

time-variant (vibrational) output feedback of the following form:

,5 + q21 sin r21 t 4 1 I 1

- i 0 with:

K(t) 0 0 0 I" - 3 t] q21 _ V_ and
I-I r21

0 0 0 I'_ + q42 sin r42

q42 =_

r42 3

Note again that the vibrations amplitudes and frequencies

should sufficiently large (see Th. 6-4-2).

/109

At this stage, the following question arises: For systems

with unstable fixed modes does it suffice to have all

vibrationally controllable elements of a closed loop system
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(6-4-14) dependent on the elements of a feedback matrix K, to be

able to stabilize the system by a decentralized vibrational

feedback system? The answer is NO. Actually this condition is

only necessary, and its inadequacy is illustrated by the following

example:

Example 6-4-3

Given a controllable and observable two station system:

X = 0 1 X+ u I + u 2

0 o

y1=[O 1 1Ix

The system has a nonstructural decentralized fixed mode in s=l.

The trace of matrix A is not negative. The system is therefore not

vibrationally stabilizable in an open loop.

Let us apply a decentralized output feedback to the system K =

diag (kl,k2). The closed loop system becomes:

I k I k I ]
= DX = 2 1 k 2

k I 3+k I

this system is vibrationally controllable since the system verifies

the conditions of Meerkov's theorem (6-4-1), for a proper selection

of elements kI and k 2. The vibrationally controllable D elements are

d12 = kI and d23 = k2 (for a higher quasi-triangular

structure). Although these elements depend on k I and k2, stabilization

using a vibrational feedback in the form:

Kl(t) 0 kl + q12 sin r12 t IK .... 0

[ 0 I 2 t 0 I k 2 + sin t
i q23 r23

is not feasible since the following is obtained in a closed loop

when this feedback is applied to the system:

/Ii0

135



0

x(t) =[A+ BK(c) C]X = D(t) X =
-i Ki(t) Ki(t) ,

K2(t) 1 K2(t) l X '

Kl(t) 3+Kl(t)j

Let us express D(t) + V(t), and the vibrations matrix is not

quasi-triangular. Therefore theorem (6-4-2) is no longer

applicable.

The following lemma proposes a necessary and sufficient

condition for the existence of a vibrational feedback law that

stabilizes the system in the presence of unstable nonstructural

fixed modes.:

Lemma 7-4-I

Given system (C,A,B) with fixed modes with respect to K F

(KF: set of acceptable control matrices). An acceptable

vibrational feedback exists that stabilizes the system if:

1) the closed loop system X = (A+BKC) = DX, K E K F is

vibrationally stabilizable (see th. 6-4-I).

2) All vibrationally controllable elements of D depend on the

elements of feedback matrix k, if and only if:

3) All kij elements contained in vibrationally

controllable elements of D are placed on one side of the D

diagonal.

4) At least one of the vibrational gains belongs to two D

elements, one of them not being vibrationally controllable.

Demonstration

Condition i) is direct according to theorem (6-4-I), and

condition 2) is obvious because if one D vibrationally

controllable element does not depend on K E KF, then an
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application of a vibrational feedback has no effect on this

element. Let kij(t ) be one of the vibrational gains. If kij
is contained in elements on both sides of the diagonal, in a closed

loop, then the resulting vibrations matrix is not quasi-triangular,

and theorem (6-4-2) is not applicable, which gives us condition 3).

Let us assume that kij contained in a single vibrationally

controllable D element is: ds_ = Qs_ + f_ kij" If kij is replaced
I

by kij(t ) = a sin rt, on the average dsk = ask + fs_ (klj + _ is

obtained where _ is a constant dependent on q, r and d Since
ks"

the fixed modes are defined with respect to the structure of K and are

independent of the K values, the change in k i by kij+v does

not affect the fixed mode, which leads us to condition 4.

/Iii

Example 6-4-4

Let us take another look at example (6-4-2). We showed that

the system can be stabilized by a vibrational output feedback in

the form:

_kll+a21sinr21t k12 k13

K(t)= 0 0 0

0 0 0
,°IJ k24
I

Ik34+q42sin r42t

Since kll belongs to a single D element (see 6-4-15 , given

lemma (7-4-1), the vibrations in kli do not affect the stability of

the system on the average. (The characteristic equation of system

(6-4-16) can be calculated and verified for _42 = O, therefore

V21 the system has an unstable mode in s=l), and therefore by

selecting _21 = 0 (no vibrations in k11), the vibrational

feedback matrix becomes:

[ o 1O, 5 - 4 1 ._ -- q42

K(t)= 0 0 0 I - 3 with - 3
I -i r42

0 0 0 I -_+ q42 sin r42t

Remark: the number of vibrational feedback loops has diminished.
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The result of this section is similar to that of Anderson and

Moore, presented in the preceding section. It shows that a time-
variant feedback can stabilize unstable nonstructural fixed modes of

the system. The advantage of a vibrational control, with respect to
Anderson's and Moore's approach is that the control functions are

continuous, and therefore easier to produce technologically. Moreover,
feedback loops are not all time-variant.

VI.4.4. Stabilization By a Vibrational Control of systems With
Structural Fixed Modes

It was established (KOB-82) that a system with structurally

uncontrollable fixed modes (type i and ii i structural fixed

modes) is placed in a closed loop in the following block-triangular
form:

I
I

Dll I

--- r--7 0
D21 ! D221

o -----.4-----I _
X = A+BKC = DX = : I I "-_- X (6-4-17)

----I----I "" ""
..- I .......... F--"

Dell , :Dkk

where xE Rn, Dii E Rn_xr_i & Z i = n, where matrices DII are irreducible
i=l

matrices (i.e. in terms of graph theory: the states associated with

block Dii i=1,...,k are highly connected). The fixed modes of the

system are block modes Dii which do not depend on matrix K.

Therefore, the stabilization of a system with structural fixed

modes is the same as a system with a block-triangular structure of

form (6-4-17).

According to the results of section VI.4.1., if a block-trian-

gular is vibrationally stabilizable (verifies the conditions of

Meerkov's theorem 6-4-1) then the vibrations should be introduced

into vibrational controllable elements of diagonal blocks since,

for the technological reasons already given, they cannot be

introduced into zero elements. Consequently, the vibrations matrix

should have a block-diagonal structure, with a structure of each

lower (or higher) quasi-triangular block, since we do not know how

/112
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to analyze the system with another structure (MEE-80). It is
evident that it is not necessary to introduce vibrations in all

blocks, but it is necessary and sufficient to introduce them into

blocks with instabilities. In short, the vibrations matrix

associated with the system with a block-triangular structure

(6-4-17) should have the following form:

with:

n.xn.

V(t) :bloc___iag. [Vl(t) ... Vk(t)] V _ R z z' ' i (6-4-18)

lquasi-triangular if Dii has at least one
vi(t) = stable mode

0 if Dii does not have an unstable

mode

Given that Vi(t ) has the same dimension as Dii ,

and should have a quasi-triangular structure, it is evident, that

the dimension of Dii , which has instabilities, should be at

least equal to two, in order for the vibrational control to be

applicable to the system. The following corollary reformulates

theorem (6-4-1) for the system class with a block-triangular

structure of form (6-4-17):

Corollary 6-4-1

Given system X = D X where D is a block-triangular matrix

with irreducible diagonal blocks (6-4-17). On the assumption that

a line vector c exists such that the pair (c,A) is observable, the

system is vibrationally controllable if and only if the D trace is

negative and the dimension of each Dii block with instabilities

is equal to at least two.

/113

Now let us consider the algebraic characterization of Sezer's

and Siljak's (SEZ-81b) structural fixed modes presented in section

VI.4. Let us apply a decentralized control to system (4-4-1), we

obtain the following in a close loop:
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ID11(Z i I

' 0
o i 1 X (6-4-19)
X = A+BKC = DX = D21(K) l D22 !

+

D31(K) I D32(K) I D33(K)

Let us assume that the unstable modes of the system are all fixed

modes (i.e. they belong to D22 = A22 modes), as the unstable

modes of blocks DII(K) and D33(K ) may be stabilized by an

appropriate choice of K. Given corollary 6-4-1, the stabilization

of type i structural fixed modes of the system using a vibrational

control is possible if and only if:

1 - c exists such that (c,A) is observable,

2 - Tr D < O,

3 - When block D22 is put in an irreducible block-triangular

form similar to (6-4-17), then the dimension of each sub-block

with instabilities is equal to at least two.

It is evident that these conditions can be applied to an open

loop system by replacing D by A.

Note:

1 - A system with only one type i unstable structural fixed

mode cannot be stabilized by a vibrational control, unless the

physical introduction of vibrations on zero elements is

permissible.

2 - For systems with type i structural fixed modes, the

vibrationally controllable elements (elements belonging to

D22 = A22 unchanged by the output feedback verifying

the structural stress), never depend on elements of matrix K. We

therefore conclude that a type i structural fixed mode can never

be influenced by a time-variant feedback: such a conclusion is

quite consistent with that of Sezer and Siljak (SEZ-81 a,b).
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VI.4.5. Comments

/114

The use of a vibrational control for stabilizing the unstable

fixed modes of a system seem interesting because, owing to the fact

it does not require system measurements, it adapts to the

structural stress. In some cases, it may be also considered a

time-variant feedback.

Despite these advantages, heavy* calculations are generally

needed to determine an "average system" (integration of

trigonometric functions). The same is true for determining

vibrational amplitudes and frequencies (resolution of a nonlinear

inequality set). Although this drawback is attenuated by the fact

that these are off-line calculations and that they may be

systemized for making software, we think that this control is not

easily applicable for systems with a limited order.

VI.5 CONCLUSION

In this chapter we presented methods that currently exist in

literature for stabilizing systems in the presence of nonstructural

and unstable fixed modes. In contrast to the case of centralized

and unstable fixed modes, we showed that systems with structurally

controllable fixed modes under structural stress may be stabilized

using unsteady (nonlinear, time-variant or vibrational) controls

However, in sacrificing the property of invariance or linearity, we

encounter analysis problems even for small-scale systems. Further,

these controls re difficult to implement on a practical level. In

the light of these difficulties, we concluded that the most natural

approach for stabilizing the system or for placing its poles is to

relief stresses on the control structure. Moreover, structural

fixed modes (in some cases) may not be removed with this approach.

This preserves the steadiness of the control, an aspect that will

be studied in the next chapter.

*except for a system class with onTy one vibrationally

controllable element per line.
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CHAPTERVII - POLE PLACEMENTOF DECENTRALIZEDSYSTEMS:
SELECTION OF THE CONTROLSTRUCTURE

/115

VII.I INTRODUCTION

In the previous chapters, we have shown that fixed modes are

divided into: fixed modes that are structurally controllable under

structural stress (type ii 2 nonstructural and structural fixed

modes, due to a perfect simplification between poles and zeros (see

ch. IV) that an unsteady control can prevent (see ch. VI)) and modes

that are structurally uncontrollable under structural stress (type i

and ii structural fixed modes because information is not being

transferred between the subsystems. This problem is fixed by adding

extra links between the subystem, i.e. by relieving the stresses on

the control structure.

Since the inclusion of a (time-variant or nonlinear) unsteady

or nonconventional (vibrational) control is difficult to do, it

seems that structural stress relief (when possible) is the most

natural approach for avoiding the occurrence of fixed modes of any

type.

/116

In this chapter, we shall present the different methods,

currently existing in literature, that are used for determining an

optimum control structure (with respect to the nu -k.,verv,_ fe _k_v_ck

loops or their related cost) without fixed modes; i.e. permitting

free a free pole placement of the system. The methods of

synthesizing the structural stress control of systems without have

no fixed modes will be discussed in the next chapter.

If the system decomposition into subsystems is implemented

(this is often the case, particularly for geographically

distributed systems) then the problem is to find extra feedback

loops to be added to the predefined control structure to remove the

fixed modes. However if the system decomposition is not totally

established, then the problem remains in finding the most

decentralized control structure possible to allow for an arbitrary

pole placement of the system.
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VII.2 STRESSRELIEF ON THE CONTROLSTRUCTURE

The existence of fixed modes is associated with the stress

applied to the structure of the control matrix. The most natural

method for removing them is then to relief this stress, namely to

change the structure of the control matrix by adding extra links

between the subystems. Let us consider system (C,A,B) of (2-4-2)
and decentralized structural stresses (the set of block-diagonal

control matrices Kd). If the system has fixed modes relative

to KD, the problem will be to find extra links to add between

the subsystems so that the fixed modes disappear, i.e. to find a
control structure K:

K = Kd + {certain Kij/ i _ j}

such that the fixed modes are eliminated (fig. 7.1).

i

A(C,A,B;K d) # (_

====_

Fig. 7.1 -

_--|
qr:

.... !

". IF,--'

%

o

A (C,A,B;K) = (_

The determination of the new structure should be optimum, i.e.

this new structure should satisfy an optimality criterion which is,

for the methods presented in this section, either the number of

extra links between subsystems, or their related cost.

VII.2.1. Wang's and Davisons' Approach

/117

Wang and Davison (WAN-78a) searched for a control, for a system

(C,A,B) with N stations, minimizing the cost of transferring

information between stations and stabilizing the system. Let us
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consider the set of matrices K such that:

K(rij, i,j=l .... ,N) A-{K / K = cost (Ki]) =

_K i I
Ii I ........... JKIN

- % _-+ -'--- ....... J- - -I

: I ....... I • |,
---'1 ..... -''-- .I- "- -

.K I:............ KNN 
RmixPi

]

Kij _ ,rank (Kij). = ri].• _ (7-2-i)

where rij is the number of links between station j and station i

(corresponding to a local control u i = Kij yj). If the cost of

the link per unit of time from station i to station j is zij , then

the total cost of the information transfer is:

N N

e(rij, i,j=l,...,N) = _ [ rij z..
j=l i=l Jl

The problem is therefore reduced to:

Min e (rij, i,j=l,...,N)

0 _< rij _< min(mi,Pj )

under A [C,A,B;K(rij , i,j=l .... ,N)] C C- (7-2-2)

where C- is the left half of the complex plan.

For a given control structure, let us express each submatrix

Kij of rank ij as the product of two matrices: Kij = Lij

M,= where Lij is of dimension m i x ri_ and Mi__J J J

is of dimension rij x pj. If SI = {Sl, .... ,Sq}

is the set of unstable A modes, then condition (7-2-2) ils verified

if and only if Lij and Mij exist such that:

/

S.Ei SI

is not identically zero.
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Remark: Condition (7-2-3) implies that no S I element is a fixed

mode with respect to control u = [block (Lij Mij_Y.

Since the possibilities for selecting integers rij are

limited, the problem of optimization cannot be solved in a limited
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number of steps, as shown in the following example:

Example 7-2-I (WAN-78a)

Let us consider the following two-station system (N=2)

X = 0 X

O -

Y2 :[_ O1 00] X

+ u I + !]°2

Let us assume that the cost of transferring information between

two stations is:

zii = z22 = 0, a12 = 1 and z21 = 2

1 - Let us consider the following decentralized control:

The fixed polynomial with respect to K i is:

_/(s;C'A,B,KI) : p.g.c.d. { der(sI-A-B KI C)} = s i

kij_ R I
2 - Let us consider the case of a nonzero transfer from station

1 to station 2, the cost, then, is: O(rll=r21=r22=l, r12 = o)= 1'

and the control matrix is:

K2(r11=r21=r22 =I, r12 =0) =,

we can show that the fixed po

"k1 I 0 01 I
I 0 o

k_qa

k31 i k32 k33

yn0mial is a

, kij ER

ways s.

}
/119

3 - Now let us consider a transfer from station 2 to station 1.

In this case the transfer cost is: B(rll=r12=r22=l, r21=O)= 2 and the
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control matrix is:

 3 r1112221r21o k23 L,<22
LEo -jII k32 k33

The rank stress on matrixIml2 k131 may be expressed:

L='22k23J

where 61, a2,_&y2 are arbitrary real numbers.

the system is:

p.g.c.d. _det [ s-6 IYl6iYikij[ - 62Y1
- k32

k23j = 1

The fixed polynomial of

- _lY2 - k111/
%

_--(_2Y2 1 k21JI= 1- k33 s+2

and there are no more fixed modes if the following is selected:

61 = 62 = kll = I, Yl = k21 = k33 = O & Y2 : k32 = - i

and all poles of the system are placed at -i.

Wang's and Davison's procedure (WAN-78a) consists of calculating

the cost of any structure enabling the system to be stabilized, then

of selecting the structure with the lowest cost. Even though there

are a limited number of steps, it seems that, for systems with a

large number of stations, the approach is either difficult to apply,

and therefore for real situations is not of great interest.

Vli.2.2. Armentano's and Singh's Approach

Armento's and Singh's procedure (ARM-82) handles cases of

interconnected systems and is based on the fixed mode characteri-

zation described in section (III.3.5b).

Let us consider system (C,A,B) of (3-3-8) and any structure

control KF such that K F E Kd where Kd is the set of block

diagonal matrices, therefore: _(C,A,B, KF) C &(C'A'B'Kd)'IAssumel that

/120
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s is a fixed mode of the system with respect to the two struc-

tures Kd and KF, then by applying corollary (3-3-3) to

(A+B KF) we see that there is at least one i i E {1,...,N}

such that:

-I N

z )-Zll • Z I1%. +B. K. C II
li i j=l _ lj j

V K.. E Rmixpi _ K. E Rmixpj & i _ j
$

iz ij

Since expression (7-2-4) is verified for any Kii and Kij ,

it is particularly verified for any Kii = O. Given the set of indices:

Sd = {i/i E {I,...,N} and (3-3-10) is verified}

S F = {i/i E {I,...,N} and (7-2-4) is verified}

we therefore have:

SFC Sd
(7-2-5)

Proposition 7-2-1 (ARM-82)

If s is a fixed mode relative to two structures Kd and

Kd, then s verifies (7-2-4) for indices i 6 SF such

that (7-2-5) is verified.

From proposition (7-2-5), we know that if s remains a fixed

mode for another structure,then the Kij may be set at zero

for i 6 SF, and s verifies (7-2-4) for an index subset of

Sd). This leads us to Armentano's and Singh's procedure: "to

eliminate a decentralized fixed mode, simply add nondiagonal

blocks Kij # 0 to matrix K d for indices i E Sd".

If the system has several fixed modes, it is simply necessary to

consider the association of sufficient structures in eliminating

each fixed mode.

Example 7-2-2 (ARM-82)

If we assume we have a system with three subsystems, as

depicted on the next page:
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r" o

Xll
0

_:12_
x21
0

x22
--0"_ --

x31
0

, x32

ro

o

I

o

o

o

11o olo o
I

olo oleo
I

010 110 1

ol 0 0 I0 0
I

0 I 0 1-!--0--1-
I I

Oa 0 0 I 0 0

m

x11

_x!2..]

x21

x22

x31

, x32

o:olo
I I0 I0

I-
"0- I--0- I 0-

+ I
01111 0

-o-I-o-
olo11

illu2

3

by applying a decentralized control of the form:

we obtain the following in a closed loop: ui

0 1 I O O 0 o
I

kll k12 1 0 O O 0

!%I O I 0 1 I
A+ BK= I

O O ik21 k22 O 0
I-

O 0 t 0 1 O 1

0 0 ! 0 O k31 k32

The system has a fixed mode at the origin s = 0.

I=1,2,3

with

Let us use the matrix norm i j to calculate (3-310)

, [o i ] and s = 0, we obtain:Ai{ kil ki2

-I

)- 11 =II<A, Ik. ,
.I '_l __!_1)

• max {(Tf_ + jkil l,I }

therefore s = 0 satisfies (3-3-10) for Sd = {2,3}. It is

easily verified that in order for control structure K* s = 0 to

remain a fixed mode, it is eliminated for K**.

r J 1KI1 O 0 ] K1 K1

K** K21 K22 K23 K._. 1 2 3= = K22 O
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Armentano's and Singh's procedure described above only

determines the i indices of the extra blocks of the control matrix

to be added in order to eliminate the fixed modes. It does not

provide any information on the j indices or on the number of extra

blocks required. In the case of the example, it is easily verified
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that if KI3 is done in structure K**, the fixed mode remains

eliminated. If the system has several fixed modes, the procedure

can give several indices i E Sd and therefore redundant

extra links for eliminating fixed modes: the solution obtained is

therefore far from optimum. Further, the procedure is usable only

if Sd is a natural subset of set {1,2,...,N} as shown in the

following example:

Example 7-2-3 (ARM-82)

Given system (C,A,B), with two subsystems:

I:lIi•oO°'°oOiiIfOooO° uU
olo !o _J

Ei :JI, j
Y o!i

/122

For a decentralized control matrix K = block (11, K22) the

closed loop matrix becomes:

Ii° °IIA + BKC " kl., 1 k12_ O O

I 1
0 ik21

0 _k22 O

it is easy to verify whether the system has a fixed mode at the

origin s = O, we have:

-1

ii(Rlz)-I ii• ,. = i • I

-i

II(" -zA22) II = _ 1
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therefore Sd = {1,2} is not a natural subsystem of {1,2} and the

procedure is not valid in this case!

VII.2.3. Approach Based on the Fixed Mode Sensitivity

The procedure proposed here is based on fixed mode

characterization by their sensitivity (TAR-84b) described in section

III.2.2.

VII.2.3a Formulation of the Problem

For a given structural stress, a fixed mode is not sensitive to

control variations and therefore its gradient matrix SK r is

zero (see proposition 3-2-1). If structural stresses are not taken

into consideration, then the nonzero elements of matrix SK r

correspond to the feedback matrix elements which may influence the

mode under consideration. This leads us to the following

proposition:

Proposition 7-2-2 (TAR-84b)

sr is not a fixed mode of the system with respect to

control K E K F if matrix K contains at least one element of

set Ksr such that:

Ksr = {kij/i j such that (skr)ij # O}

where (Skr)ij are elements of the sensitivity matrix with /123

respect to the control of mode sr.

This proposition provides a simple method of determining the

set of extra links used in eliminating the fixed modes from the

system. Let us assume that the system has q fixed modes. According

to proposition (7-2-2), we therefore have q sets of kij elements,

i.e. Ksq , associated with the fixed modes. (The elements of sets

Ksi i=l,...,q are determined from matrices SK i which are

calculated without considering the structural stress). The set of
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extra links K* searched for should therefore verify:

Card (K_ K ) _ i i=l,...,q
S
i

Let us note that to determine the structure of K* it is not

necessary to consider all Ksi sets for each mode:

If K i_ Ks , £ _ J, card (K*F_ ksl ) ) Is j

card (K*h Ksj ) _ I then Ksj can be eliminated.

The problem is reduced to the following:

Problem 7-2-1

Find K* such that:

card (K r_ K ) b i
S
i

Ks _ zs , i _ J
i j

I=1,...,_ ,q

This solution to this problem may be found by solving the

following optimization problem:

VII.2.3b Formulation of the Optimization Problem (TAR-84b and

85c)

Let us consider the set of elements formed by associating all

Ksi elements retained:

Z : i=lUZsi Zsi_ Zsj si _ sj

Card Z = r 4:m x p

It is clear that each Z element represents a feedback link (for

the sake of convenience, the preceding notation kij will be replaced

by a i i=l,...,r, for Z elements).

Let us associate a cost ri _ 0 for each Z feedback loop

z i and let us define the Boolean vector:
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with

• w )T
W = (wl, ., r

9:

I ifz. E KWi = I

0 othe_ise

/124

Let us also define the following matrix:

z if z.(: K: ] si
e =If £ij IIi:l,...,_ witch £ij 0 otherwise

j=l,... ,r

The determination of the structure of matrix K (i.e. K*), which

minimizes the cost of links and avoids fixed modes (see Prob. 7-2-1)

may be formulated according to the following Boolean linear program:

Problem /-2-2

. r

.in [ rj
j=l

sub
r

£ij wj) 1 i:I,...,_
j=l

i £i {I
w. = i=l,...,r

J 0 J = 0 j=1,...,_

We recognize here the well-known graph theory problem in

searching for a coverage of K by Z at minimum cost:

Given a unidirectional graph G = [Z, K, A] where:

i

Z = {zl,..., zr }

K = {kl,..., k_ } : set of Z parts

A • specific application of A in Z

A(z i) ={kj / zi_ kj } i=1,..,r

A cost r i is associated with each peak z i i=ll,...,r.

An equivalent problem to problem (7-2-2) is:

Problem 7-2-3

Find _ _ Z / U

by minimizing [ ri

z.e_
i
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Several algorithms are at our disposal for solving this problem

(7-2-3): Coverage method (KAU-68) (ROY-70), Gomorey's method

(KAU-68), and Thiriez's method (THI-71).

Example 7-2-4 /125

Let us reexamine example (4-5-1). The system with two fixed

modes (one is structural and the other not): _ ={1,2} the

corresponding sensitivity matrices, without structural stress are:

SK(s) = IooiJl[!o! /110 0 - /3 , SK(s=2) = 1 3 0 1

0 0 0

We therefore have:

Ks1 ={ k13, k23}

Ks2 = {k21, k23 }

Set Z is:

Z = {k13, k23, k21} = {z I, z 2, z 3}

Matrix L is expressed:

o]
The linear program takes on the following form:

1 - If the link costs are equal r i = 1 i=1,2,3

(minimization of number of links) we then have:

rain (w I + w 2 + w3)

w I + w 2 • 1

w 2 + w 3 • I

w. ={ I
I 0 i=1,2,3

The program solution is W = (0 1 0), and the addition of

k23 is sufficient for eliminating the two fixed modes.

2 - However if we assume that the link costs are given by

vector R = ( 1 3 2 ) then we have:

min (w I + 3 w 2 + 2 w3)

sub w I w 2 _ 1
w ={I

w 2 + w 3 _ 1 i 0 i=I'2'3 i
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The program gives two solutions:

W = (1 0 1) which corresponds to elements k13 and k21

W = (0 1 O) which corresponds to element k23.

VII.2.4. Characterization of a Set Containing Enough Links to

Eliminate Type i Structural Fixed Modes

In this section, we are interested in systems containing type i

structural fixed modes only, by characterizing the set containing

the required number of extra feedback loops to be added in order to

eliminate the fixed modes. To do this we shall use the algebraic

characterizations of structural fixed modes (see ch. IV).l

VII.2.4a use of Sezer's and Siljak's Characterization

Sezer & Siljak (SEZ-81b) have shown that the state equation of

a system with type i structural fixed modes may be put in the

following form:

o ,o l
=L21L 22 1 u |

L×3J LT';[];';[[ ;_;3-J

[-;;]Y I-_!, c;,,o_..... 2....

l.p I I:, I

"I;.;I'°" 1"
(7-2-6)

X

where the control and observation stations are partitioned into two

aggregated stations _ and B.

It is clear that the fixed modes relative to the control:

K = bloc diag. (_, _) (7-2-7)

are modes of block A22. These modes (see ch. IV) are

simultaneously uncontrollable by one of the aggregated stations,

i.e. B, and are unobservable from the other, i.e. _. Since the

system is assumed to be globally controllable and observable, then
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the fixed modes of the system are controllable from the aggregated

station _ and are observable from aggregated station 8. Therefore,

the set of extra and sufficient links for eliminating these modes is
given by:

K aB={kij / ij so thatU i E _ & Yij _ Y8 } (7-2-8)

and therefore the feedback matrix becomes:

: _ J (7-2-9

Since the decomposition of the system into subsystems is done

relative to the control and observation systems and not relative to

the states, in; some cases the sufficient set _8 may be reduced as

follows:

Proposition 7-2-3

Since system (7-2-6) has type i structural fixed modes, the set

of extra and sufficient feedback links Ksuf ={kij / i_I & j.E J}.

where I(J) is the set of unidentically zero column (line) indices of

matrix B* (C*), with:

B = LB2J and C : [C_ C_]/,,

/127

Demonstration

The sufficiency of set Ksu f is demonstrated simply and

directly by calculating the dynamic matrix of a closed loop system

and by showing that it is not block-triangular.

By applying control U = U Y (where K is in form 7-2-7) to

system (7-2-6), the dynamic closed loop matrix is: D = A + BKC

_-=_--_ a i @B C + A

2 ---i---- - _ •- = DI1 DI2o i
2 1 _ I _BKBcB [z 3_3 D21 D22_ % q + .__ % ÷A31 B__ cB ,

(7-2-i0)

Thus, matrix D has the same block-triangular structure as A,
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and the structural fixed modes a(A22 ) remain unchanged.

It is clear that to eliminate these fixed modes, a feedback

matrix is necessary to destroy the block-triangular D-structure and

to therefore influence block D12.

Now let us consider control structure (7-2-9), the closed loop

matrix then becomes:

D' =D+

with

w Cx-T-_ j "
s : KB

- -"

The block-triangular structure is destroyed and K:B is the set

of links we are looking for.

To find Ksu f note that D_2 is expressed:

DI2 DI2 + Z (bi)* *' = k.. (C.) (7-2-11)
i,j ij J

where (bi) * is the i-th column of B* and (Cj)* is the j-th

line of C* and kijE %S'l Formula (7-2-11) allows us to conclude that

if (bi) * or (Cj)* is identically zero, then kij has /128

no influence and there is no need to consider it.

Furthermore, the set Ksu f is not empty since the system

is controllable and observable which implies _ _ o & B _ O. We

stress the fact that Ksu f is the set of extra Kij

elements to be added to the initial structure (7-2-7), that is

assumed to be given, but if the structure is not given then we use

the same method described above to show that the structure:
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K _ I = _ ._- ....

! (7-2-12)

makes it possible to avoid type i structural fixed modes. For this

structure, K_B is given by proposition (7-2-3) and Ks_is given by:

KSe ={ kij / ij so thatUi (_ U8 & yj _- Ye} (7-2-13)

KBe may be zero in the particular case where u_(Ys) controls

(observes) the entire state space.

Example 7-2-5)

Given example (3-3-1). By the following permutation matrix

[ ooo ,O O O O /
i

P = O 0 0 1

0 1 0

2 0 0

The system is put in the following form:

uI u2 u3

o o / o o,o /
PTAP = 01 0 a , P BT "O 1 I0 |

o I,b-'I = [To-_ ,%-I
o oro_,_J f .... -J

,,rooool 
_' : '_H-o_o4_o-o.ij_'

Y3Lo o o, t I1J}B

and the system has a type i structural fixed mode relative to the

K =

control structure:

k11k1211
o ',

We therefore obtain I = {1,2} and j = {3} which gives

Ksu f = {k13 , k23} therefore:

K, = K+Ksu f = k21 k225ik23_I
0 ,k33 J

and K' '

I o o lh,];/ o o
I,L-,L_ -o-

/129
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Note that K' and K'' assure the absence of type i structural

fixed modes and that the choice between the two is made as a

function of an additional criterion (number of links or their cost,

for example).

VII.2.4b Use of Sensitivity Characterization

According to Sezer's and Silajk's characterization (eq. 7-2-6),

it is very simple to determine set Ksuf, if the system is

already in block-triangular form (7-2-6), but if the state equation

of the system is in a general form, then the problem is to find a

permutation matrix that puts it in this form.

This problem does not arise if we use structural fixed modes

characterization based on their sensitivity (TAR-84b) (see IV.5).

In effect, the structural sensitivity matrix (see def. 4-5-1} makes

it possible to determine the elements of dynamic matrix A which are

at the origin of type i structural fixed modes. Namely, the

elements of block A22 (see eq. 7-2-6) and therefore the X2 states

that correspond to fixed modes. Knowing that the X2 are uncontrol-

lable from aggregated station B and unobservable from aggregated

station _, using the accessibility matrix of system R, which is in

the following form (see appendix 3 for its determination):

x u Y

R = 0 U (7-2-14)
H Y

we determine two stations _ and B and therefore the Ksu f set

we are looking for. To to this, we propose the following algorithm:

Algorithm 7-2-1 (TAR-84b)

1 - Let A be the set of type i structural fixed modes of system

(C,A,B) under consideration

2 - Determine the structural sensitivity matrix corresponding

to the set of fixed modes A as follows:
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SS = S_ + ... + SS. F+ ... + SS
± l r

where SS i is the structural sensitivity matrix corresponding

._A and where "+" is the "OR logic".to the mode s

3 - Determine the set of X2 states corresponding to the fixed

modes A: si 6 X 2 if at least one nonzero element exists in line or

column i of matrix SS.

/130

4 - Determine the accessibility matrix R of the graph

associated with the open loop system (C,A,B) (see appendix 3).

5 - The X 2 states are uncontrollable from aggregated

station 8, therefore:

uj( us if for xii£ X2/we have fij = 0---- :u-%.

6 - The X2 states are unobservable from aggregated

station _, therefore:

Yj _ Y= if for x i _ X2

-" %
we have qji = O.

7 - The set of supplementary and sufficient links for

eliminating type i structural fixed modes is:

K'

suf = { k.z]./ ij 'SO thatu i ( U & yjE Y8 }

Example 7-2-6

Given example (3-3-1) with a_c, we have seen that this

system has a type i structural fixed mode, i.e. s= b.

1 - The structural sensitivity matrix corresponding s = b is:
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0 0 0 i]

0 0 0

SS(s=b)m 0 1 0

0 0 00 0 0

2 - x2 ={x 3}

3 - the lines (columns) corresponding to state X3 of

the accessibility matrix for (output) controls are:

u I

x3 [0

Y2

Y3

t__.

u 2 u3
3rd line of F

I O] q

3rd line of Q

4 - The two aggregated stations are:

U s = {Ul, u3} -----_U_ = {u2}

={Yl' Y2 } -"_ Y8 = {Y3 }

5 - The sufficient set is K_u f = {k23} and

the sufficient structure for eliminating fixed modes is:

oolk22 k23

0 k33j
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I

Note that set Ksu f is not equal to Ksu f,

determined in the preceding section, because in stage 4 of the

algorithm proposed, stations _ and 8 are determined from the

accessibility matrix of the open loop system (C,A,B). Therefore the

diagrams created by the K feedback of (7-2-7) are not taken into

K'
consideration. To accomplish this we obtain suf_ Ksuf'. However,

Ksu f of the algorithm proposed may be determined by replacing

in step 4 of the algorithm the accessibility matrix of the open loop

system (C,A,B) by that of the closed loop system (C,D,B) where D is
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the dynamic matrix of the closed loop system given in (7-2-10) and

for an arbitrary K value.

It is evident that once stations and B are determined, there

is no problem in determining K' or K".

Let us note that in general the set Ksu f {or

Ksu f,), and therefore K' or K", is only formally of interest

because it is simply sufficient and nothing allows us to specify the

number of kij elements needed for eliminating fixed modes or

for determining them. All we know is that the use of all Ksu f

(or K_uf) elements assures this elimination•

VII.2.5. Comments

The approaches presented in this section are all based on the

idea that by relieving the structural stress, the fixed modes can be

eliminated• This approach seems to be the most natural, particularly

particularly for eliminating structural fixed modes for which it is

the only possible approach.

Wang's and Davisons' approach (WAN-78a) is impractical for large

systems, and that of Armentano and Singh (ARM-82) gives only a rough

solution to the problem (they only indicate the i index of the blocks

to be added for eliminating the fixed modes), and this is only valid

for the class of interconnected systems• The approach based on the

sensitivity of fixed modes (TAR-84b) is valid for system with simple

fixed modes• Its advantage is that it is simple to use. The

approaches of section (VII.2.4) are for systems with type i

structural fixed modes is limited and they are impractical.

We would like to emphasize a special case of structural stress

stress relief: this is the use of a global control, i e u = u_ + u
• • g

where u is a local control which can be calculated in a traditional

manner (CHE-70, SIL-69, THA-60) and Ug a global [static

(SIL-76a and b, SUN-77, SIL-78, SOL-81 and 85) or dynamic (GRU-80,

GRU-84)] control, developed from the states of all subsystems. This

/132
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approach does not account for the information transfer limitations

caused by structural stress. Consequently, this approach is a

centralized approach to the problem.

VII.3 POLE PLACEMENT BY DYNAMIC OUTPUT FEEDBACK: SELECTING THE

CONTROL STRUCTURE

Although the decomposition of a system into subsystems is

generally determined by physical considerations (control station

distribution for example), it may have applications where the

decomposition is not complete, i.e. a few degrees of freedom are

available for selecting a decomposition. In this case, the problem

is to find a control structure assuring free pole placement of the

system (absence of fixed modes for a dynamic control). Secondary

criteria may be added such as the number of feedback links or their

related cost.

It is evident that a control structure can be determined using

any characterization method (see ch. III, IV and V) and by testing

all possible decompositions and by selecting that which verifies the

set criterion. However this test is very heavy and requires many

calculations as we have 2mP-1 configurations to test for a

system with m inputs and p outputs. This is why it is advantageous

to develop a decomposition method.

Below, we shall describe in detail procedures that currently

exist in literature and used for determining an optimum control

structure (relative to the number of feedback loops or their related

cost) assuring the absence of fixed modes.

VII.3.1. Locatelli's, Schiavoni's a,d Tarantini's Approach

Locatelli, Schiavioni and Tarantini (LOC-77) use their graphic

characterization of fixed modes (see section V.2) to search for a

minimum set of feedback loops F C F (F defined in section V.2) such

that the mode set {Sl,...,s h} C _(A) is assignable, i.e. the

element of the set {Sl,...,Sh} should be a fixed mode relative
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to F*). The minimum set F* is determined relative to a criterion
accounting for costs associated with feedback loops:

R(F) = ! r..(i,)EF lj

where rij is the cost associated with the authorized feedback

loop kij.

This problem has a solution if and only if the system does not
have fixed modes relative to set F. This solution is given by

solving the following Boolean program:
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Mi. Z
(i,j) E2F

under stresses:

Z v.gz.g
Q (i,j) E EIF zj tj >s 1

r. . w..

z-m, ] z]

C) j/(i,j)Z z.g.:
EF z3

[ zg

j/(j,i) ([ EF ]I

Q zigj .<wgij (i,j) _ E2F

with

1 if (i-re,j) E F*F

wij = _ . (i,j) _ F2F
t 0 if (i-re,j) _ F

g=l .... ,h

and for g = l,...,h

Zg = _[
i,j

(i, j) E E1F' G (sB) _ O, ® (Sg is neither a oole nor zero)j-m, i ....

1 (i,j) EIF, Gj_m,i(Gg) = ® (Sg is a Dole)

q (i,j) ElF, lim J-m'i (s)g _ O, - (s is a zero of order q)

s ÷ s (s-sg) q gg

1 if the arc (i,j) belongs to the elementary circuit with

s as a pole and such that the arcs (i,j) E E2F
iRcluded in this circuit minimize

0 otherwise

Note that stress C) guarantees that Sg is a pole of a

transmittance from at least one arc retained, and stress @ forces
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this arc to belong to an elementary program.

This program is very interesting because with slight

modifications, it can be used to solve diverse problems (LOC-77)

among which:

1 - Test for the existence of fixed modes,

2 - Search for a minimum structure, relative to the number of

links between subsystems, to avoid fixed modes,

3 - Search for supplementary links to be added to an initial

structure F, for which the system has fixed modes, used for

eliminating fixed modes, while minimizing the cost of these links.

To accomplish this, simply replace set F by set P X M (where P

= {1,...,p} and M ={1,...,m} in the initial problem and associated a

very high cost to the elements of set (P X M - F) compared to the

cost associated with the elements of set F.

Example 7-3-1

Given example (5-2-1), the system has a fixed mode s = b rela-

tive to the decentralized structure Fd {(1,1,(2,2),(3,3)}. To deter-

mine a minimum structure eliminating the fixed modes, we use Locatel-

leli et al's program to:

A ={ b} , F = P x M et

=fO (i,j) E Fd
r..

i] I 1 (i,j) E F- Fd

we obtain •

under

®

®

Min w42 + w43 + w51 + w53 + w61 + w62

Z26 > 1

Z15 = Z41

Z24+Z26 = Z42

+ Z51 + Z61 ,

+ Z52 + Z62 ,

Z41 + Z42 + Z43 = Z24

Z51 + Z52 + Z53 = Z15

Z36 = Z43 + Z53 + Z63 , Z61 + Z62 + Z63 = Z26 + Z36 _'\
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© Zij _< wij i:4,5,6 & j=I,2,3

The program gives only one solution which corresponds to the

feedback loop k23 and therefore the structure

Ii°
1

k22

0

k2 ,

k33J

eliminates the fixed mode.

Note that Locatelli et al's program is only valid if the system

has simple fixed modes, and that it does not give all possible

solutions to the problem.

IiI ok22
0

In effect, in this example the structure:

k33]

is an optimum solution to the problem which is not obtained by the

program. This leads to the question: What solutions are obtained

by this program?

VII.3.2 Senning's Approach /135

Given system (2-4-2), Senning (SEN-79) looked for a feasiibly

decentralization control defined as follows

Definition 7-3-1 (SEN-79)

A control structure is said to be feasibly decentralized if the

system is stabilizable by this control structure and if the

information transfer cost is minimal.

Senning examined the conventional control problem (based on a

quadratic optimization criterion) of linear systems and searched for

an optimum control structure relative to a criterion taking into

account the system decomposition and the cost of links between the
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different subystems. The solution to this problem gives a feasibly

decentralized control in the form:

N

u. = K. Yi + [ Kij Yj i:I, Nl zi -.., (7-3-1)
j=1

Accordingly, Senning defined an expanded optimization criterion

(E0C):

N

EOC : PI + __ q.2
(7-3-2)i

i=l

which is the sum of the Performance Index (PI) and a term describing

the desired control structure, using a weighted measurement of

nonlocal information. This measurement is made in the form of a

nonlocal control vector standard weighted by rij factors more

or less penalizing the information exchange between two subsystems:

with

R, =

1

qi = llUi, non local II

N N

= IIj=IZ rij uill = II_.j=l rij Kij Yjll =IlK i R i Y II

F_<

"" - ....... "o_ O

4J -J.

\

! riN Ip
u___ __N_.

K. : [K i Ki Ki KN ]I ,1''''' ,i-i '0' ",i+l' "''

/136

where Ipi is the identity matrix of dimension Pi x Pi

The E0C criterion is expressed:
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N

EOC = PI + Z IIK. R. Y II2
l i

i=l

and the problem posed by Senning is therefore: to find optimum

control matrices KI,... , _ such that: EOC .(KI''''' _) 4EOC (KI,... , _)y

for any feasiSle matrix KI,..., _.

The solution to this optimization problem is given by Senning

(SEN-79) p. 55). It can be obtained by solving four matricial

problems for each station.

Senning's procedure is highly interesting, since it

simultaneously handles the problem of a control structure and the

conventional problem of system quadratic optimization. It therefore

makes it possible to obtain optimum controls from the standpoint of

structure and gain, without having to first test for the existence

of fixed modes. Of course, if the system does not have fixed

modes, then the control obtained is totally decentralized.

VIII.3.3. Procedures Based on the Graphic Characterization of V.4

The procedures presented here are based on the graphic

characterization of Pichai et al's (PIC-84) and Linnemann's (LIN-83)

structural fixed modes presented in section V.4.

VII.3.3a. Structure With Mi.imum Number of Elements

Let us consider system (C,A,B) and its directed graph described

in section VII.2.4. Since the system is controllable and

observable, then each state peak xk E X k=l,...,n belongs to

at least one input-output pathu i ÷ yj,therefore according to theorem

(5-4-1), it is possible to obtain a set of feedback loops that

verify condition i of theorem (5-4-1), by considering the feedback

loops corresponding to the arcs that close all input-output paths.

Namely, it is a sufficient set for eliminating type structural fixed

modes. This set is therefore given by:
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K.I = {k'i/iJz such that h.li = 1}

where hij are elements of the input-output accessibility

matrix H (see appendix 3).

Of course, this set is not minimum for some state peaks

belonging to several input-output paths. This set will then be

reduced afterward.

The binary vector Zij of dimension n, given by the

following is associated with element kij:

{ 1 if the_state peak x E ui +yj /

t t

Zij = t=l ,. .. _n

0 otherwise

Definition 7-3-2 (TAR-85a)
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It is said that vector Z. dominates vector Z if, when we
z] qr

Z t
have zt = 1,1 then qr = I except for at least one t for which we have

13

Zt. = i and Zr = O. /
zj qr

Definition 7-3-3 (TAR-85a)

-_y
It is said that the state peak xtE ui j is separated if and

only if:

zt..-AND • Zt = _ g qr _ ij such kqr_- K 1
i ] qr that

With these definitions, we are able to formulate the three

following rules:

Rule @

If vector Zij (corresponding to kij ) dominates all

vectors Zqr v qr such that kqr E Kl,then the feedback

loop kij is sufficient to avoid type i structural modes.
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In this case, we have lj = I t=1 ....,n, i.e. all state peaks

belong to ui -_ Yj and therefore kij may influence any system

mode.

Rule (_)

The feedback loop kij may be eliminated from a sufficient

system K 1 if the associated vector Zij is dominated by

one (or more) vector(s) Zqr v qr such that kqrE KI" ' The resulting

set is a sufficient set.

It is clear that if Zqr dominates Zij,then the

state peaks belonging to path ui _ Yj also belong to path

and element kij may then be eliminated in the presence of

k
qr"

Rule C)

The feedback loop kij 6 KI is a necessary loop in

kI if path ui ÷ yj Icontains a separated state peak.

According to definition (7-3-3), a separated state peak belongs

only to one input-output path, i.e. u.1 ÷ Yj,and therefore kij

is the only element that may form with u._+ yj a highly connected

component containing this state.

With these rules we propose (see TAR-85a), the following steps

for reducing the sufficient set of feedback loops KI:

I13_

1 - Using the graph associated with the system or with the

accessibility matrix:

1-1 Determine sufficient set K1,

2 - Perform K* =:{ ¢ }

3 - Let K2 _ K1 be the subset corresponding to all separated

state peaks, i.e.:
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K2 = { k..z] / ij SO that kij.E KI & u._ _ y.j contain at /

least one separated state peak

following:

If K2 is an empty set go to 4, otherwise do the

3-I Do K = K + K 2

3-2 If Z.t. = I _ k..E K & for
i] i]

otherwise continue

3-3 Perform zt = Zt.. • OR. Zt
qrqr l]

k ijE K 2 & kqr_ K I

3-4 K 1 =' K 1 - K 2

3-5 £ = I

t=l, .... n gO to 7

t=l,...,n for an" !# qr such that

3-6 K2 : @ i

4 - Let K3_ K I be the set of £ elements such that their

associated vectors dominate as a set all other vectors corresponding

to k E KI.j If K 3 is not empty do K*=K*+K 3 (thelj

existence of several sets K3 -=P solution multiplicity) and go to 7.

If K3 is empty, continue.

5 - Let K4 C K1be the set of kij whose associated vectors

are simultaneously dominated by £ vectors; If K4 is not empty

perform KI=KI-K4 and continue.

6 - Perform £,£+I and go to 3.

7 - End: K* is a reduced set of sufficient feedback loops used

for avoiding type i structural fixed modes.

Example 7-3-2

graph:

170

Let us consider the following example given by its associated

u2

Yl

Y2



Set K is:
1

The corresponding vectors are:

xI x2 x3

Zll = [I 0 O]

Z12 = [0 1 1]

Z22 : [0 0 i]

States x i and x 2 are separated (disjoined), therefore

K = {kll , k12 } is a minimum solution, because Zll and z22

cover the states.
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Note that the procedure does not give one solution, any more

than any other minimum solution in K 1. However if step 5 is not

taken into consideration (dominance elimination), we obtain all

minimum solutions in set K 1.

In the above example, if we return to theorem (5-4-1), set

{k21,; k12} _ KI also assures the absence of type i structural fixed

modes. In effect, owing to the restriction of the set of solutions

(solution E K1) , the solution provided by the procedure is in

general not optimum. An optimum solution contains max (INs , ONS )

feedback loops, where INS is the necessary and sufficient

number (minimum number) of inputs for attaining all states, and

ONS is the necessary and sufficient (minimum number) of

outputs for any state to reach an output. If the minimum number of

input-output paths for covering all states is q, then the procedure

provides an optimum solution if q = max(INs , ONS), or if these

paths are totally disjoined.

The procedure is easily adaptable to the frequency range,

particularly for systems with simple modes. If we let G(s) be the

transfer matrix of the system and s i i=1,...,n si _ sj

its modes, then set K 1 is given by: K 1 ={kij/i j such that

gij # = 0 and the associated vectors are such that:

i

I if mode st is a gji(s) pole
: {j i 0 otherwise
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We then continue for the formulation in the state space.

VII.3.3.b. Minimum Cost Structure

For practical applications, it is important to determine the

minimum cost structures avoiding fixed modes, because structures

with a large number of elements are significant only if the costs

associated with the feedback loops are equal. However since costs

are generally not equal (but are proportional to the distance

between the control stations, for example), the determination of a

minimum cost structure is of prime importance. In this section we

shall formulate the problem as the well-known problem in graph

theory of optimizing integers (see VII.2.3b).
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Given the graphic characterization of section V.4, we

introduce the notion of "arc set" (TAR-85-c) associated with a

state:

Definition 7-3-4 (TAR-85c)

The arc set associated with the state peak xt is defined by

Kxt = {kij such that xt belongs to a highly connected component

formed by the arc (yj, ui) and the input-output path ui ÷ yj } i

The arc sets Kxi may be easily determined based on accessibility

matrix R. With definition (7-3-4) and theorem (5-4-I), the following

corollary is direct:

Corollary 7-3-1 (TAR-85c)

If we consider a feedback matrix K, the following condition

implies that the system does not have type i structural fixed

modes :

Card (K _. K ) _I i=l,...,n
X.

I.
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where K* = {k.. such that k.. _ in K}
13 iI

Given this corollary the problem is formulated as follows:

Find K* such that:

Card (K _ K ) _I i=l .... ,n
X.

i

We recognize problem (7-2-1) in this problem and the solution

is therefore that of the optimization problem of section VII.2.3b.

Example 7-3-3

Given example 7-3-2.

KXl = { kll} I

Kx2 { kl# I

Kx3 {k12' k22 }i

Note that Kx2C %3

we obtain:

The arc sets are:

and therefore kx may be eliminated;

Kx I : {kll } and _2 = {k12} I

The optimization problem in this case is trivial, and the

solution is:

K = {k11, k12}

Note that the solution provided here is also sub-optimal, as

in the preceding section. In the case of the example, it is

optimal if rll < r21. If the costs associated with the

feedback loops are equal, then the procedure provides a structure

with a minimum number of elements which has the same degree of

optimality as the solution provided in the preceding paragraph.

VII.3.4 Sezer's Procedures /141

Sezer's procedure (SEZ-83) is based on Reinschke's procedure

(REI-81), which enables a centralized control structure to be

determined, and guarantees structural controllability and
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observability (see section IV.22) of a controllable and observable

system (C,A,B) of order n, presented by its associated graph. He

proposes the following theorem:

Theorem 7-3-1 (REI-81)

System (C,A,B) is structurally controllable and structurally

observable if and only if:

i) The system is totally connectable to inputs and outputs.

2) gr (A,B) = n

f

To study the connectivity property of the system, let us

assume that by permuting the lines and columns of A, it can be put

in a higher block-triangular form where the diagonal blocks are

irreducible matrices (the states associated with a block forming a

highly connected component in the graph). To accomplish these

permutations, several algorithms are available, see for example

(HAR-65, KAU-68, KEV-75). Given A in the form:

° "-i-J
Let rA be the submatrix containing r first left columns

of A, and A r be the submatrix containing r lower lines of A,

i.e.:

rd and d

r

The structural rank deficit of rA and Ar,

respectively is given by:r

r d = _r gr(rA)

r=l,...,n

d r = r - gr(Ar)

notated
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It is clear that nd= d n = n - gr(A) = d. /142

Let us define the set of integers:

I 2 d Jrd (j-l)r, r,.., r such that = rd+I

rI, r2,'-, rd such thBtd
r.

Example 7-3-4 J

o

=d _tlq d =d =0
0

we have d = 2 and therefore

r d

d r

0 1 1 I 1 Io]

.___,__!___i 2 = d4 =
_1 Io Io/
'.- - I--- -_ -| I

I 1 I lJ
" -h-/ i

iOJ l=d 1

o 1 I 2

II

id 4d

I 2

r = I, r = 4 and I"

rI = i, r2 = 4 I

With these definitions Reinschke (REI-81) (REI-83) gave the

following theorem:

Theorem 7-3-2 (REI-81 and 83)

Let A be a higher block-triangular matrix where the diagonal

blocks are irreducible, with a structural rank gr(A) = n - d < n.

Therefore in order for the pair (A,B) to be structurally control-

lable, matrix B must be of dimension n x d, and:

i) elements bri,i (i=l,...,d) must not be not zero.

2) if the nondiagonal blocks having the same lines (i.e. i E

I) as a block diagonal are identically zero, then the B lines of

indices i 6 1 should contain at least one nonzero element.

If gr(A) = n, then minimal matrix B is a vector (nxl) for

which the elements corresponding to the lowest A block should not

all be zero.
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It is easy to see that I) implies that gr(A,B) = n and 2)
implies the full connectivity of the system inputs.

Theorem 7-3-3 (REI-81 and 83)

Given matrix A of theorem (7-3-2), then in order for the pair

(_) to be structurally observable C must be of order (d X n)

and:

1) Elements Ci,ir (i=l,...,d) should not be zero.

2) If nondiagonal blocks having the same columns, (i.e. j E J),

as a diagonal block are identically zero, then the C columns of index

j E j should contain at least one nonzero element.

If gr(_) = n, then the minimal matrix C is a line /143

vector for which the elements corresponding to the first A block

should not all be zero.

Example 7-3-5

For example (7-3-4), we obtain:

rd

C -_

d !
I rl--I---I---I--| 2

L_ J
--F----_--- 1 _ B =

I . I .

L_.._ 1

1 1 1 2

_1_ --4- ....
I !
I I !

The shaded area should have at least one nonzero element, and

* represents a nonzero element.

Remark: theorems (7-3-2) and (7-3-3) do not provide a single
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structure.

Vll.3.4b. Sezer's Procedure: Structure With Minimal Number of

Elements

Before we are able to present Sezer's procedure, a few

definitions are necessary:

Definitions 7-3-5 (SER-83)

Let F be a binary matrix such that fij = 1 if and only

if kij # 0 (F represents the structure of the control

matrix under structural stress).

2
2 - Let F, :IIf_jll & F2 :llfijIllbe two control structures.

is said to imply F2 if fl = 1 _ii_; 52=.. 1
I] i]

F 1

3 - A feasible structure is termed essential if it is not

implicated by any other feasible structure.

4 - Among all feasible and essential structures, a structure

is said to be minimal if it contains the smallest number of nonzero

elements.

Let us recall that a system (C,A,B) has no structural fixed

modes relative to F if and only if:

gr(M F) = gr I
m

0
P

= n + II_ = p

and each state peak in the graph associated with the system belongs

a highly connected component with at least one arc corresponding to

a feedback loop.
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Below, we assume that the system is structurally controllable

and observable, which implies that if gr(A) = n - d, then d < min(m,p).
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Let us define matrix B (C) as the matrix with the

index columns (lines) i( I (j E j) of B.

Theorem 7-3-4 (SEZ-83)

Given the integer sets:

I = {il,... , i_} d _ _ _m

J = {Jl .... , jq} d _q _p

I': {i{,. , i }=I

J'= {j{ .... , j_}=J

such that the system sij = (BI,A,CJ)

and observable, and such that: gr(A,Bl) = n and

verified.

d
is structurally controllable

(cj! are

If F is a control structure such that gr (FI,j) = d and

that FI_j,,j_j, contain at least one control structure such

that FI_I,,j_j, contains at least one nonzero element in each

line and column, then F is a feasible structure.

Considering theorem (7-3-4) and Reinschke's procedure, Sezer

(SEZ-83) gives the following procedure to determine a feasible

essential and minimal structure:

Procedure 7-3-1 (SEZ-83)

To determine a feasible essential and minimal control

structure:

1 - Let I and J two index sets of an essential and minimal

structure determined using Reinshcke's procedure (see VII.3.4.a)

and

2 - Select I'C I and J' c Jsuch that: gr(A,B I

gr (_,.)_= n

,) = n

3 - Construct FI_I,,j_j, such that it contains exactly

nonzero elements positioned in different lines and columns.

178



4 - Construct FI_I,,j_j,, such that it contains exactly max

( ,q)-d nonzero elements positioned so as to not leave a line or

column zero.

5 - Position all other F elements at zero.

With theorem (6-3-4), F is feasible and essential, as for

certain fij = I, if i 6 I-I' and j 6 j-J', then the link loss

(Yi,Ui) leaves a highly connected component, in the

graph associated with the system, not containing a feedback matrix

element. Conversely, if i 6 I and j 6 j then since I and J are

minimal, (A, Bi_{i}) and (a, Cj_{j}) are structurally

uncontrollable and unobservable. In both cases and without

fij, F is not feasible. Finally, F is an essential and

minimal structure just as I and J are minimal.
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A direct consequence of this procedure is that the number of

minimum elements of an essential and minimal structure is max ( ,q)

where and q are the minimal input and output numbers which

guarantee the controllability and observability of the system.

Example 7-3-6 (SEZ-83)

Given the following system:

o[ o][o IX = X+ u

1

Reinschke's procedure gives: I = J = {1,2} and I' = J' = {1}

from which we obtain, using Sezer's procedure, the single solution

F = diag(1,1).

Note that for this example, the structure:

179



is also feasible and minimal (it may be verified by plotting the

graph associated with the system). Consequently, the procedure

generally does not provide all feasible solutions. The above

example shows that a feasible essential and minimal solution does

not necessarily contain the feedback links d in Yj j E J and

Ui i E I. This situation arises when we have:

[.:]gr = n + min(£+q) (7-3-3)

Cj

in this case we have: gr (M F) = n + m + p for any F with

gr(MF) = n+m+p for any F with gr(Fij)= min(f ,q)

Example 7-3-7 (SEZ-83)

Given system (C,A,B) with:

-i--_--I---I
L* _-_L_. I

L_J

.' '*' "I

*-_ -I- -/
I 4- I *I

: -T-J

I i l,l

[-,:,-]

For which we have a: I = J {1,2,3} and I ° = j' = {1,2}.

Sezer's procedure gives the two following structures:

and

Note, in contrast to the preceding example, that (7-3-3) is

not verified in this case, because there is no F that verifies

gr(MF) = n+mF+p, unless gr(Pi,j) = d = 2, even if gr(F) = min(£,q) = 2.

/142
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Therefore, the solutions provided by the procedure are the only

feasible, essential and minimal ones.

Sezer's procedure itself does not require calculation, but it

is based on Reinschke's procedure which needs to "block-triangular-

ize" the system and calculate the structural rank of 2N submatrices

to determine the subsets I:, J, I' and j' required for Sezer's

procedure. In short, despite this calculation and although the

procedure generally does not provide all feasible solutions,

Sezer's method is still of interest because it still proposes at

least one structure with a minimum number of elements. Finally,

note that this procedure does not give any indication of link costs

and from this standpoint the solution set forth generally remains

suboptimal.

Vli.3.5. Comments

The algorithms presented in this section (with the exception

of Senning's) do not provide a control structure for which the

system does not have fixed modes and the gain determination should

be done in later (see ch. VIII).

Locatelli et al's approach (LOC-77) is valid for systems with

simple modes and its solution is generally suboptimal. The

approaches of section Vli.3.4. are only valid for avoiding

structural fixed modes. The advantage of the approach of section

Vll.3.4a (which we propose) is its simple formulation, but it only

makes it possible to avoid type i structural fixed modes and the

solution is generally suboptimal. Sezer's approach requires many

calculations, but it provides a structure with a minimum number of

elements avoiding structural fixed modes. Senning's procedure

seems to be the most interesting of these approaches, because it

generally includes the gain structure and value without having to

first test for the existence of fixed modes.
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VII.4. POLE PLACEMENT BY STATIC OUTPUT FEEDBACK: SELECTING THE

CONTROL STRUCTURE

/147

Arbitrary pole placement of a system is mathematically

equivalent to an arbitrary placement of coefficients al,...,

an of its characteristic polynomial:

n n-i
det(sl-A-BKC) = s + a s + ... + a s + a

1 n-i n"

These coefficients depend on K elements, which are considered

here to be the degree of freedom of the problem. Theory (5-5-1)

determines these coefficients from the graph associated with the

system using the "circuit family" notion (see def. 5-5-i). It is

evident that an arbitrary placement of these coefficients requires

n feedback loops.

Based on the theory of real functions with several variables

Reinschke (REI-83 and 84b) concludes that an arbitrary pole

placement necessitates that the matrix of dimension n x (mxp):

"_ a I _a 1
-- eeoeeeo.

k I _ k 2

a n _ a n
ee......

k I _ k 2

has a rank equal to n, where kl, k2,.., are K elements.

One immediate consequence is that if n > mxp then an arbitrary pole

placement is impossible.

Theorem 7-4-1 (REI-83 and 84b)

One necessary and structurally sufficient condition for an

arbiltrary pole placement of the system is the existence of n

circuit families of width 1,2,...,n in the graph associated with

the system (see V.5), where each family contains an arc

corresponding to a different feedback loop.
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Example 7-4-1

Let us consider the system of example 7-3-2, and a full

feedback matrix. Fig. (7.1) gives the related graph. One

possibity for satisfying theorem (7-4-I) is to put k21 = 0,

fig. (7.2) gives the circuit families for this choice:

I i k21

Recently Evans and Kruser (EVA-84) provided this result in

terms of a rank test of a binary matrix: a necessary and sufficient

condition for these poles of a system to be structurally assignable

est that: TR (MKL v.A MLa) = n, V_ is the Boolean product and: MKL-,

and MLa are to binary matrices given by:

a ....i. a

1 n

L
q

: HLa &

L 1 ...... L q

...... = MKI.1,

where al,... , a a are coefficients of the characteristic polyno-

mial, kl, k2,.., are the nonzero elements of K and LI,... ,

Lq the circuits in the graph associated with the system containing

arcs corresponding to feedback loops. (mKL)i j = 1 if and only if

the ki element belongs to circuit Lj and (mLa)i j = 1

if and only if the L i circuit belongs to the aj coefficient (see

theorem 5-5-I).
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VII.5 CONCLUSION

In this chapter we have shown the different methods of

determining a control structure that avoids fixed modes. We think

that the approach of relieving structural stresses is the most

natural one for eliminating fixed modes. Most of the corresponding

methods only determine the structure, with the exception of that of

Senning who completely determines the control (structure and gains)

and this is why it is of interest. The feedback gains should be

determined in a later stage. This is the subject of the next

chapter.
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Despite the few studies available for decomposing the system

into subsystems avoiding fixed modes, it seems to us that the

problem of searching for control structures (dynamic or static) at

minimum cost should be investigated more thoroughly and therefore

remains an important research area.

CHAPTER Vlll - SUMMARY OF DECENTRALIZED CONTROLS IN THE ABSENCE

OF FIXED MODES

VII.1 INTRODUCTION

We have seen in chapter II that the fundamental result of a

decentralized fixed mode is that the absence of unstable fixed

modes is a necessary and sufficient condition for the system to

stabilizable in a decentralized manner. Therefore if the system

does not have fixed modes or if the fixed modes are sufficiently

stable, the problem consists of determining the control gains to

assure good system performance. This chapter focuses on the

different methods of determining these gains, while assuring a

certain optimality in terms of the traditional quadratic criterion.

We focus more particularly on the parametric optimization approach,

as we propose an algorithm for calculating a robust control based

on this technique. In effect, the algorithm proposed uses the

/152
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gradient method projected and accordingly it may considered as a

modification of Germomel's and Bernussou's algorithm (GER-79a).

VII.2 PARAMETRIC OPTIMIZATION SYNTHESIS

VIII.2.1. Optimization Problem

Let us consider an invariant system, composed of N subsystems

and represented by the following global state equation:
0

X(t) = A X(t) + B U(t)

Y(t) = C X(t)

where x _ Rn, U E Rm & Y _ RPare the state, the controls and the

outputs of the system, respectively. Let us assume that we only

have measurements on part of the state, i.e. that it is necessary

for a control to be created by a static output feedback(*) with

time-invariant gains:

FU = - KY = - KCX

The problem is therefore formulated as follows:

rain J(K) = I®(X T Q X + UT R U) dt
K o

O

under x = AX + BU

Y=CX

U=- KY
with Q, R symmetrical matrices defined as semi-positive and

positive respectively, i.e. Q _ 0 and R > O.

(8-2-1)

The closed loop system is given by:

0

X(t) : (A - BKc) X(t) = D X(t)

the solution to this equation is:

X(t) = e (A-KBC)t X(o) : T(t,o) X(o) (8-2-2)

where T(t,o) is the transition matrix of the closed loop system.

Let us replace (8-2-2) in the expression of the criterion; we

obtain:

(*) The synthesis of aynamic controls is reduced to the synthesis

of static controls (see appendix 5).
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J(K) = I°° xT(°) TT(t, o) QI(K) T(t,o) X(o) dt
o

C T K Twith QI(K) = Q + R K C

Using a property of the plotting of a matrix

leads us to:

with
J(K) : Tr (P X )

o

X = X(o) X(o) r
o

P = S_TT(t, o) QI(K) r(t,o) dt
O

tr(bTa) = tr(ab T)
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where P is the solution to Lyapunov's equation:

DTp + PD + QI(K) = 0

with D the dynamic closed loop matrix D = A-BK.

takes on the following form:

min J(K) = Tr (P X )
K o

under f(K) = DTp + PD + QI(K) = 0

Let us define the set of feasible solutions by:

The problem then

(8-2-3)

, cK ={ K / KERmxp_i and such that F(K) = O} (8-2-4)

where F(K) represents the decentralization stress applied, given

by:

F(K) = K - blook.diag(K I.... , KN) (8-2-5)

The problem becomes:

with

min J(K) = Tr (p X )
K o

under f(K) = DTp + PD + QI(K ) = O

F(K) = 0

D, QI(K)_ X & F(K) defi ned above
o

(8-2-6)
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VIII.2.2. Projected Gradient Method - Geromel's and Bernussou's

Method

To solve problem (8-2-6) and obtain a solution satisfying the

structural stresses applied, Geromel and Bernussou (GER-79a, 79c,

82) propose the use of a "primal" "projected gradient" method which

is summarized by the flow chart of figure (8.1).

2- ,_'-/

Progression
K= K- a G= No

Key: 1-Initialization; 2-Matricial gradient calculation;

3-Projections over set defined by structural stresses: G direction;
4-Test- Stability; 5-Yes; 6-Stop.

VII.2.2a. Calculation of the Matricial Gradient /154

The matricial gradient of J(K) is easy to calculate using the

method given in (BER-81) for calculating the matricial derivative

of a composed function and which is summarized by the following

theorem for a static case (for a dynamic system see (GER-79c)):

Theorem 8-2-1 (BER-81)

Given the composed scalar function (f(X,G(X)); if f is

derivable with respect to all arguments (X and G(X) being matrices)

then: , ,
df(X,G(X)) aL(X,Y ,Z )

dX 8 X

where L(X,Y,Z) is the Lagrangian given by:

L(x,y,z) = f(x,Y)+ Tr [zT(G(X) - y)]

Y* and Z* are solutions of the steady conditions:

a L(x,Y,Z) _ aL(x,Y,Z) = o
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which gives:

with

= Zr (P x ) + Tr "tsT f(K)l
L

o

d3
- 2 (RKC - BTp) SC T

dK

DTp + PD + QI(K) = 0
f(K)

g(K,X ) DS + S D T= + X:O
o o

D = A- BKC

QI(K) = Q + C T K T R KC

(8-2-7a)

(8-2-7b)

(8-2-7c)

(8-2-7d)

(8-2-7e)

To calculate gradient (8-2-7a) it is necessary to solve

Lyapunov's two equations. This is a reasonable task if the order

of the system is not very high. Note that the two equations

(8-2-7b) and (8-2-7c) are decoupled for a known D and and they may

therefore be solved concurrently.

If we consider that all states of the system are accessible

for measurements (state feedback control) then: u = -KX and the

(8-2-7c) equations are expressed in this case:

dJ = 2 (RK- BTp) S (8-2-8a)
dK

with

f(K) = DTp + PD + QI(K) = 0 (8-2-8b)

g(K,X o) = DS + S D T + X = 0
o (8-2-8c)

D =A- BK

KT (8-2-8d)
Q1 (K) = Q + R K (8-2-8e)

The optimal control is given by:
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K* = R-I BT P (8-2-9)

where P is the solution to Ricatti's equation:

ATp + P A - P B R-1 BT P + Q = 0
(8-2-10)

Here equation (8-2-8c) has become useless and the control no longer

depends on the initial conditions.
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VIII.2.2b. Projection of the Gradient - Feasible Direction

Let us consider the feasible gains Kc defined in

(8-2-4), where F(K) is a linear function of K and F(o) = O. Let us

assume that K E Dc is an initial solution such that dJd-_ _ O,

then the feasible direction G, for which a progression set exists

such that J(K-aG) J(K) for any o < a _ & i _ o,
dJ

through orthogonal projection of the matricial gradient a--K on the

hypersurface representing the stresses• Such a projection may be

realized by solving the following optimization problem (GER-79c):

dJ dJ
rain % Tr {(_-_- G)T (_-__ G) }
G (8-2-11)

Under F(G) = 0

The Lagrangian of this problem is expressed:

1 dJ dJ ET
L(G,E) = _ Tr {(_- G) r (__ G)} + rr { F(G)}

The stationarity conditions give:

L dJ _L Tr { ET_G - 0 _ G - _ + _G F(G)} = 0

_L
DE - 0 _ F(G) = 0

To verify the decentralization stress G should have a diagonal

structure Gd and the stationarity conditions are expressed:

G dJ
-n+ E = 0 GGG d

dK

Tr (E T G) = 0 G_ _d

where _d is the complementary set of cd (Gdt/ _d = Rmxp

(8-2-12) _

& G d r_ _d = _))"

The solution to (8-2-12) gives the expression of the projection

operator which, in this case, is expressed by:

_d ( ) block.diag{(.)l,..,(.) N } ; (.)E Rmi'pi• = (8_2_13)_

Therefore, the projection over the decentralization set simply

consists of eliminating the non block-diagonal terms from the

expression of the matricial gradient.
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If the structural stress applied were more general than the
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full decentralization, i.e. KF, the stationarity conditions

(8-2-6) would remain the same provided that Gd is replaced by

GF and _d by _. Consequently, the projection of the

matricial gradient over the set of matrices under any structural

stress simply consists of removing the terms from the gradient

expression corresponding to the zero terms of the stress.

The existence of a feasible direction matrix is guaranteed by

the following lemma:

Lemma 8-2-I (GER-82)

The optimal solution to the projection problem (8-2-11), with

Kc given by (8-2-4), is such that:

a) if IIGII_ o _then _ • o exists such that J(K-aG) < J{K)

b) if IIGII= 0 matrix K satisfies Kuhn-Tucker's conditions of

the problem

rain J(K)

K(_K
c

Note that this lemma only shows the existence of a value a

such that K : aG is stabilizing. To speed up the convergence of

the algorithm, it is desirable that a is as high as possible. It

may therefore be obtained by solving the problem:

min J(K-aO)

a_O

However this problem has no analytical solution, and it is better

to adopt an heuristic method of determining a for each iteration.

VIll.2.2c. Stability of the Algorithm

For each iteration, the algorithm provides a K matrix which

plays the role of the initial matrix for the following iteration.

Accordingly, and to guarantee the stability and convergence of the

algorithm, matrix K should be such that the closed loop system is

190



asymptotically stable, therefore K E Ks; Ks defined by:

K :{K/KEK
$ c

and that the closed loop system

is asymptotically stable} (8-2-14)

The following lemma gives the sufficient conditions in order

for the algorithm to create a stabilizing control for each

iteration.
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Lemma 8-2-1 (GER-79c)

If J(K) is a differentiable function relative to K, then

_K_K :
s

a) For each iteration there is a step a > 0 such that:

dJ

J(K-aG) < J(K) or G IId (_-_)

when G # 0

b) If the pair (A, Q_) is completely observable and _x > o
o

therefore _a such that

J(K-aG) < J(K) < == -+ (K-aG) E K .
s

This lemma gives a sufficient condition for the existence of a

such that K - aG is stabilizing. For each iteration, it should

therefore be ascertained whether the gain obtained is stabilizing,

therefore a should be such that:

i) (K- aG)E K
s

ii) Tr {P(K-aG) X } <Tr {P(K) X }
o o

When the algorithm requires the calculation of matrix P, then

condition i) may be verified by testing the definition of P.

Actually Geromel and Bernussou (GER-79a) use the the following

conventional adaptive law for determining a:
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i+l i iGia = _a if r(Ki-a ) < J(K i) and p(K i _ ai Ci) > 0
i+l i

a = ,,,a otherwise

VIII.2.2d. Degree of Suboptimality

The problem of nonlinear optimization considered here is

generally nonconvex with respect to K. Therefore Geromel's and

Bernussou's algorithm, which satisfies the necessary optimality

conditions, tends toward a local minimum or an inflection point in

space of parameters kij. Of course the convergence point

depends on the initial solution K o (step 1 of the algorithm).

The degree of suboptimality of the solution is defined by

where J* corresponds to the optimal solution without structural

stresses as given by (8-2-9) and J is the optimal solution obtained

by the algorithm presented.

VIII.2.2e. Initialization of the Algorithm - Armentano's and

Singh's Algorithm

Like all other "primal" methods (projected gradient), Geromel's

and Bernussou's algorithm (GER-79a and c) requires an initial

stabilizing gain matrix satisfying the stresses applied. The

existence of this gain is related to the existence of fixed modes

relative to the stresses applied (see ch. If). In literature,

several studies are found, based on conjectures, for determining

this initial gain (AOK-73), WAN-78b, FES-79, IEK-79, SEZ-81c)

which are discarded one after the other by counter examples.

Among those which give procedures for determining this gain, let

us mention (DAV-76Aa, ARM-81). We will present Armentano's and

Singh's algorithm (ARM-81) because, by this algorithm, a solution

can always be obtained as long as there are no unstable fixed

modes. Further, the other algorithms additionally require local

controllability i.e. the controllable pair (Aii , Bi).

Armentano and Sing (ARM-81) use an approach already proposed

by Mc Brinn and Roy (MCB-72) to calculate an output feedback
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control without structural stress. This approach is based on the

calculation of the gradient of the natural dominant value of the

closed loop system. We have seen in chapter III that for distinct

natural values, this gradient is given by:

- W T b i c.V if k.. _ 0

Bs [ ] i]

_''= I =O_] 0 if kij

where V and W are the left and right natural vectors of the dynamic

closed loop dynamic matrix. The real part of the gradient is

therefore given by:

_s

gij = Re (T-_-) (8-2-15)
l]

Use of (8-2-15) for the dominant natural value of the closed loop

system enables Armentano and Singh to propose the following

procedure:

Step 1:

Step 2:

Step 3:

Step 4:

Remarks

Arbitrarily select a gain satisfying the stresses i.e.:

K E Kd

Calculate the dominant natural value sd of the

dynamic closed loop matrix (A-BKC)

if sd is negative (or its real part is negative)

stop. Otherwise, calculate the natural right and left

vectors of (A-BKC) associated with sd.

Calculate the gradient matrix G defined in (8-12-15);

Drop down on the line by more than a large slope (direction

- G); do K ÷ K-aG (a: no iteration) go to step 2.

1 - If the dominant natural value (with a positive or zero real

part) tends toward a local minimum, then the algorithm should

recommence with another gain.

2 - A unidirectional search for a may be improved using a

quadratic interpolation.
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3 - If the dominant natural value becomes multiple during each

iteration, disturb K slightly (WAN-73a) to make it a single value

again.

Vlll.2.2.2f. Flow Chart and Example

In short, Geromel's and Bernussou's algorithm may be presented

by the flow chart of figure. 9.2

i
f (K,P) = 0 ÷ P

g(K,S) : 0 -_ S

1
3- I calcul.gradiomt

1
4-

d_ j/dK

_ =_ a 1

. yes G _-I(d_)ij if kij _ 0 /'

_ 0 if k1i =0 ,
P(K-aG) • 0

and • K-aG_ No"

• //

S /

/

, _o _ =._--

Fig. 8.2 - Flow Chart of Geromel's and Bernussou's Algorithm

Key: l-Calculation of initial gain; 2-Solve Lyapunov's equations;
3-Calculate gradient ; 4-Projection of gradient; 5-Stop.
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Example 8-2-I (GER-79a and c)

Let us consider the following system (with three subsystems
0

N=3): x = A X + B U

with:

A =

o

-2

1 I 0,5 1 0,6

-3 [ 1 0 0

0,5 1 I 0 2 1 0,5

0 0,5 L__I____ 3_ i 0 -0,5

1 0 I 1 0 I 0 1
I I

0 0,5 I 0,5 0 I -3 - 4

0

1

B =

i I
I

i I

I 3 0

Io 4 I
!

r7
I

12
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For a state feedback control:

U i = - K i X i i=1,2,3

and for matrices Q = 16 and Rl = I4; the initial gain

retained (calculated using Geromel's and Bernussou's approach

(GER-79b

K 1 =

based on Lyapunov's theory) is:

'11,51 - 0,55 I
-&--

I 2,3 0,62 1
I

L0,82 3,41 I
I

- I 4,96 0,06

with a I = 0.i, _ = 1.2, v = 0.5 and X0

1
= I, the

(8-2-16)

application of Geromel's and Bernussou's algorithm, programmed with

double precision on an IBM 370/165, for an end of calculation

test E = 10-3 gives, after 59 iterations, the following optimal

gain:

I,21 0,35 I l

t

K59 1 1,43 0,45 I= I
I 0,87 2,46 I
I r

I 1,58 0,24

the initial value of the criterion is J(K 1) = 8.76 and at
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convergence J(K ) = 3.

loop system are:

The natural values of the closed

{ - 1.7262 + 1.2784, - 4.2746 + 0.8277, - 6.0666, - 5.2803}.

VIII.2.3. Chen's Mahmoud's and Singh's Iterative Procedure

Chen et al (CHE-84) considered the control problem by

decentralized state feedback, i.e.:

min Tr(P X )
0

KE K d

sub f(K) = DTp + PD + QI(K) = 0

D=A- BK

QI(K) = Q + KTR K

The solution to this problem without structural stress is

given by:

K* = R-1 BTp (8-2-9)

where P is the solution of Riccati's equation as follows:

ATp + PA - P B R-1 BTp + Q = 0 (8-2-10)

To obtain a suboptimal solution under structural stresses,

Chen et al (CHE-84) propose a modification of Geromel's and

Bernussou's algorithm as follows: Based on an initial full gain

matrix (given centralized optimal solution (by 8-2-9)), the blocks

which should be zero are successively cancelled and the optimal

matrix is searched for during each cancellation using the gradient

method. This procedure is summarized by the following steps:
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Step I:
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Solve Ricatti's equation (8-2-10) to calculate the

initial gain matrix: KI = R-1 BT i.e.

KJ=

KII KI2

21 K22
: :

...... KIN

• .,..6

• .

• *..i

• "" "glqN

, j=l



Step 2:

a) Cancel a kJ block, i.e. KIN to define:

K i = "" ... K2N

I

b) Calculate the natural values of (A-B Ki): if

matrix (A-B K i) is stable go to step 3, otherwise

consider K i as the starting matrix of Armentano's

and Singh's algorithm (see VIII.2.2) and find a matrix

K i which stabilizes matrix (A - B Ki).

Step 3: Using matrix ki, solve Lyapunov's two equations

(using Hoskin et al's method (HOS-77) for example)

(8-2-8b) (8-2-8c) to calculate the gradient (8-2-8a).

Using a conjugate gradient algorithm, with a unidirec-

tional search, using a quadratic interpolation, determine

a matrix K i which minimizes the criterion.

Step 4: Cancel another K i block, i.e. KN1 we obtain Km+l /162

Ki+l

"Kll K12 ...... K1,N_ I 0

o _N

put i i+1 and go to step 2.

The procedure continues until the desired block-diagonal

structure is obtained.
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EXAMPLE8-2-2 (CHE-84)

Let us consider example (8-2-I); application of this procedure

FO. 9_.004. 0,2487 10,1887 O. 1823 I

K 1 lO, 2761 ...... T ..... I
0,29 , 1,143-0, 902"

= I

10,4608 0,2684 I 0,6536 2,219 I
T

LO,6O68 --T3366 T 0_38_3 0,1207 I
I

gives:

0.3117 0.04 ]

0,4006 0,1202

0,2878 -0.031

1,184 0,32

After 6 iterations we obtain:

,145 0,3162 I 1

K 6 = I 0,1264 0.4981 I

I 0,7882 2,2224 I
I

| -t
I 1,366 0,2269

_ithJ(K I) = 2.718 & J(K 6) = 3,007

Remarks

1 - The number of iterations is at the most equal to N(N-1),

but each iteration requires a fairly large number of subiterations

according the number of zero elements in the removed block.

2 - There are no restrictions in the block cancellation

sequence. The procedure is applicable, for any structural

stresses, without modification.

3 - The procedure may be adapted to calculate an output

feedback control. In effect, if C-1 exists the only change

is in the given initial gain value, and in this case by:

K = R -1BTp C -I (P solution of Ricatti's equation (8-2-10) and

replacing equations (8-2-8) by (8-2-7).

If rank(C) < n, then C-1 does not exist and the proce- /163

dure requires the calculation of an optimal initial gain

K = R-1B T P C T (CcT) -I this gain may be found by applying step 3

of the procedure.

4 - According to Chen et al (CHE-84), this procedure is more
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advantageous than Geromel's and Bernussou's algorithm because it

requires less computer time: for example Chen et al inserted two

algorithms on PDP-IO and the CPU time required for example (8-2-I),
was: (CHE-84):

Geromel's and Bernussou's Algorithm

Initial block-diagonalization

Suboptimal block-diagonalization

53.2 sec

101.26 sec

Chen et al's Procedure

Initialization (full matrix)

Suboptimal block-diagonalization

2.56 sec

35.81 sec

5 - Like Geromel's and Bernussou's algorithm, the procedure

gives for all iterations a stabilizing gain and the structure of
the feasible direction verifies the stress for this same iteration.

VIII.2.4. Geromel's and Peres' Iterative Procedure

Geromel and Peres (GER-84) also considered the case of a
decentralized state feedback control and introduce stresses like

linear stresses on the set of control matrices. The set of

feasible control matrices is given by:

K ={K / KE RmXp
c and such that F(K) = O} (8-2-4)

where F(K) represents the stress applied, given by:

F(K) = K H = K[I - CT F(C cT) -I C] (8-2-17)

for the case of an output feedback, and by:

F(K) = K = block diag (KI,... , KN)

for the decentralization stress.

(8-2-18)
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Let us recall that the optimal control by state feedback is

given by:

K* = IR-1 BT P (8-2-9)

where P is the solution to Riccati's equation:

AT P + PA - P B R-1 BT P + Q = 0

we may express _(p) = IQ

(8-2-10)

(8-2-19)

To solve the problem iteratively, Geromel and Peres show the

following property:

If matrix K satisfies

K + L = R-1 BT p (8-2-20)

where P is a matrix defined as being positive, and a solution to

Riccati's equation

_(p) : Q + LT R L

then matrix (A - BK) is asymptotically stable for any arbitrary

matrix L.
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If L = O, we recognize equation (8-2-19) and therefore the

optimal decentralized control (8-2-9). However since L is

completely arbitrary, then it may be selected in such a manner to

have K satisfying the stress applied. In effect it is easy to see

that according to (8-2-20) and (8-2-4) and for stress F(K) defined

by (8-2-17) or (8-2-18), that matrix L should be:

L = F (R -1 BT P)

by:

Finally the degree of suboptimality of the solution is defined

d : J(P) - J(P*I

so j( P _ I) /
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where J(P) is the value of the criterion at convergence and J(P*)

the value of the criterion corresponding to the centralized optimal

solution (L = 0). In order for ddo to be independent of the

initial conditions, it is assumed that X(o) is a Gaussian random

variable with a mean value of zero and whose variance is equal to

one, we therefore obtain:

Tr(P) - Tr(P )
d = .

so Tr(P )

With this definition and the above property, Geromel and Peres

(GER-84) propose the following iterative procedure for calculating

a decentralized suboptimal control:

Step 1: i = O, L i = 0

Step 2:

Step 3:

Step 4:

Determine Pi by solving Ricatti's equation:

_(Pi) = Q + L_ R L i

if i = 0 calculate j* = Tr(P o )

Calculate by (8-2-16) or (8-2-17): Li+ 1 = F(R -I BT Pi)

\

IfllLi+l -nill< c lwhereE is a small positive real, go to

step 5, otherwise, put i ÷ i+1 and return to 2.

Step 5: Calculate J = Tr(Pi) and K E Kc by:

K = R-1 BT Pi - Li+l

The suboptimality ratio is given by: dso =--J'_-'J
J

Remarks: /165

1 - It is clear that the performance of the algorithm depends

on the method of solving Ricatti'ss equation in step 2. One inter-

esting method is given in (KLE-68F).

2 - At convergence we have:
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_(P') = Qt = Q + LT R L. J
I i I

since Qi is a positive semi-defined matrix, the problem may

then be seen as a quadratic linear problem for determining the

state penalty matrix to have K E K c. Since Qi _ Q the

criterion will increase: this is the price to pay to satisfy the

stresses on the control.

3 - the feedback matrix obtained is independent of the initial

conditions such that the closed loop system is asymptotically

stable.

4 - It is easy to account for a general structural stress

represented by KF (in this case we have F(K) = K - KF)

and even any linear stress F(K).

VLII.2.5. Comments

All methods presented in this section use the global model of

the system, and are based on an optimization of the parameters in

space. They require the resolution of Lyapunov's or Riccati's

equations of the same order as the system. They will therefore

have numerical type problems for systems with very large dimen-

sions. Additionally, they provide in general a suboptimal solution

(local minimum). However, in practice, they are viable design

methods for several problems.

VIII.3 SYNTHESIS OF ROBUST CONTROLS BY PARAMETRIC OPTIMIZATION

In this section we will review the problem of calculating the

control by parametric optimization in order to develop an algorithm

for calculating an optimal and robust control, without structural

stress, i.e. that guarantees a prespecified degree of stability of

the system (in Anderson's and Moore's sense (AND-71) and make the

performance index insensitive to small variations (around nominal

values) of system parameters.
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VIII.3.1. Optimal Control With Prespecified Degree of Stability

Let us consider a controllable and observable system:

o

x(t) = A X(r) ÷ B U(t)

Y(t) = C X(r)

and the traditional quadratic criterion:

tI=(X T Q X + UT R U)dt (8-3-2)
O

Until now we were interested in calculating a decentralized

control stabilizing the system, i.e. that places the poles of the

system in the left half of the complex plan. However from a

practical viewpoint, it is desirable to calculate a gain which

places the poles in a specified area often considered as in figures

(8.3a) and (8.3b).
Im

._ Re

,.OL

Im

Re
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Fig. 8.3a Fig. 8.35

In this section, we want to achieve a pole placement in the

area of figure (8.3b) and therefore to assure a prespecified degree

of stability _ with a closed loop system. Anderson and Moore

(AND-71) show that it suffices to replace the quadratic criterion

(8-3-2) by: ®

U TJ(K) = I e 2_t (xTQ X + R U) dr (x >0

t
O

The problem of optimization therefore becomes:

rain J(K) = /® e 2st (X T Q X + U T R U) dt

K t
O

o

sub X = AX + BU

Y=CX

(8-3-3)

U = - KY = - KCX
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To solve this problem let's change variables as follows:

= e ctt X

_=e _t X /
I

_=e Y

.I
which leads to the following problem:

where again

min J(K) : / (_T Q _ + _T R _) d_

K t
o

sub _ = if + Bff with _ : A+a !

T:

u =_ Kg:_ KC .

rain J(K) = I" (_T Q _ + _T R _) dt
K t

O

O

sub x = (__ BKC) 2 = DR

wi_ D = A +a I - B KC

(8-3-/.)

The existence of a solution to this problem is guaranteed if

the pair (A,B) is controllable and the pair (A, Q_) is

observable; in effect Anderson and Moore (AND-71) show that if

(--A-,B) is controllable and (_, Q½) observable, then the pairs

(A,B) and (A,Q _ are also.
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The solution of (8-3-4) guarantees the asymptotic stability of

loop system _ : _ _;I we have seen that this solution isthe closed

given by:

2 (RKC - BT P) S C T
aK -

f(K) = 5 T _ + _ 5 + QI(K) : 0

g(K,_ )= _ _ + _ _r + _ = 0

o oT
with _ = m { _(o) X (o)}

O

(8-3-5)

u

Note that if _= 0 then A = A and D

stabilization problem already posed.

= D and we return to the

It is easy to see that the solution to problem (8-3-3) is the

same as the solution to problem (8-3-4) because U: = - K Y, U = -

KY, and that this solution guarantees the asymptotic stability of
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the original system with degree of stabililty _, and that the

minimum values of criteria J and j are identical.

In short, to guarantee that the poles of the closed loop

system are placed to the left of the right -_ of the complex plan

(fig. 8.3b), simply apply the calculated control by minimizing the

conventional quadratic criterion (equations 8-2-7) after replacing

the dynamic matrix A by A + _I.

Note that if it is decided that the control should belong to

the class of controls under any structural stress Kc, the

solution to problem (8-3-3) is obtained by applying Geromel's and

Bernussou's algorithm to equations (8-3-5). Let us recall that

to guarantee the existence of the solution, the control structure

must permit system pole placement in the shaded area of figure

(8.3b).
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VIII.3.2. Optimal Control Minimizing the Sensitivity of the

Performance Index (TGAR-85b)

We have seen that to calculate an optimal control, it is

necessary to have exact knowledge of the system parameters.

However the parameters of the system are never exactly known, but

are given by nominal values which generally may vary or may be

uncertain. Thus the optimal controls calculated by accounting for

nominal parameter values do not remain optimal during small

parameter variations. It is therefore important to calculate a

robust control for these variations, by trying to minimize the

sensitivity of the performance index for parameter variations. To

measure this sensitivity, we adopt the following approach (YAH-77).

Let q be a scalar parameter of the system; if q changes into

q+Aq the criterion may be approximated by:

d3

J(q+Aq) = J(q) + Aj(q) = j(q) + Aq. _qq

Since the variation of the criterion is proportional to the

gradient of the criterion relative to parameter q, we shall measure
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the sensitivity of the criterion by the modulus of the gradient of
the criterion with respect to the system parameters.

Let us consider the problem already posed in the preceding

sections by assuming that the system parameters are uncertain, i.e.

uTrain J_(A,B,C,K) = f (XZQ x. R U) d_

o

0

sub X = (A-BKC) X = DX

This problem may be expressed in the form:_,

min Jl (A,B,C,K,P) : Tr(P X )
O

sub f(A,B,C,K) = DTp + P D . QI(C,K) = 0

with QI(C,K) = Q + C T K T R K C

/

,/
/

Let us apply theorem (8-2-i) to calculate the derivatives of

J1 relative to its arguments, we have:

LI(A,B,C,K,P,S) = Tr(P Xo ) + Tr [sT f(A,B,C,K)] (8-3-6)

The stationarity conditions give:

BA SA - JA = 2 PS

L1 B Jl

B - B B - JB = - 2 PS C T K T

_L1 B J1

C - B C - Jc = 2 KT (RKc-BTp) S (8-3-7)

With

8LI _Jl

_--_ = "_--K = JK = 2 (RKC - BTp) S CT

8 L 1

-_--{ = f(A,B,C,K,P) = Dr p + PD + QI(C,K) = O

BL
1
p - g(A,B,C,K,S) = DS + SD + X = O

O

Since the sensitivity measurements (gradients of criterion)

are calculated analytically, this allows us to define a new

performance index (criterion) J2:

J2 = Jl + _ Tr (J .L.J A) + -_-Tr (J .M.J B) + _ Tr (Jc.E.J) + _ Tr (JK.F.J)
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where L, M, E, F are the positive semi-defined symmetrical matrices

of the appropriate dimensions.

At this level, a question arises: Is it necessary to include

all gradients JA' FJB' FJc and JK to minimize the sensitivity

of criterion Jl ? The answer is NO, because according to

(8-3-7) :

JB = - JA CT KT

JC KT= JKC , KKC =2(RKC- Brp) S 1

JK = JKC CT

Note that under optimum conditions we have JA =0(JA < _A ) which

means that JB = 0 (JB < _B )" Also it suffices to have JKC = 0

(JKc < _KC ) to have JKC = 0 (JKi <EC) and JK = 0 (JK<_K) . Thus it

suffices to minimize measurements JA and JKC"

To come to this result, let us assume that A and B vary simul-

taneously, along with K and C. In this case, we have according to

(8-3-6) (to obtain these results using the variations method: see

appendix 4):

@ L I _ L I
JAB = "-'-"-- = --

-=_ = 2 PS
_(A, B) 8 A_@B. K c

L I

JKC = _(KC) -
- 2 (RKC - BTp) S

JAB represents the sensitivity of the criterion with respect

to variations of A and B and JKC, the sensitivity of the

criterion with respect to variations of K and C. We may therefore

define a new performance index J3:

T I T
J3 = Jl + ¼ Tr (JAB.L.JAB) + _ Tr (JKc. F.JKc) (8-3-8)

where L and F are two positive semi-defined symmetrical matrices,

of the appropriate dimensions. The problem now consists of determ-

ing the gain K which minimizes J3 and satisfies the stresses

on the structure:
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rain J (K) = Tr (P X ) + Tr (SPLPS) + Tr [(RKc-BTp) SFS (RKc-BTp) T]

K_K c 3 o

sub f(K) = DTp + PD + QI(K) = 0

g(K,X ) = DS + S DT + X = 0
o o

with D = A - BKC

cTK T
QI(K) = Q + RKC

(8-3-9

with A,B,C given by their nominal values.

To find the required optimality conditions, let us write the

Lagrangian expression:

L3 = J3 + Tr (vTf) + Tr (wTg)

with

from which we obtain the stationarity conditions:

a L 3 a J3

a---K- a K - 2 (RKC_BTpjv + R(RKC_BTp) SFs_BTws cT

a L 3

a_ = f(K,p) = DTp + p D + QI(K ) = O

a L3

a---W: g(K,S) : DS + S D T + X : 0
o

a L3

_-_ = fl (K,P,S,W) = DTw + WD + Q2(K,P,S ) = O

a L 3

_-P = gI(K,P,S, V) = DV + V DT + Q3(K,P,S,L ) = 0

D = A-BKC

Q1 (K)= Q + cT K T RKC

Q2(K,P, s) = SPLP + PLPS + (RKc_BTp)T(RKc_BTp)sF +

+ FS(RKc_BTp) T (RKC_BTp)

Q3 (K, P, S, X° ) = Xo +SSPL+LPS S-B(RKC-BTp) S FS-S FS (RKC-BTp) TBT

(8-3-I0a)

(8-3-10b)

(8-3-10¢)

(8-3-10d)

(8-3-10e)

In the case of a state feedback control (C = I and F = 0), the

stationarity conditions (8-3-10) are simplified in:

1171
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with

B J3
- (RK - BTp) V - BTw S

_K

f = DTp + PD + Q + K T RK = 0

g=DS + S DT+x =0
o

fl= DTw + W D + SPLP + PLPS = O

gl= D V + V D T + X ÷ SSPL + LPSS = O
o

and the optimal control is given by:

J3 * R -I R-I B T I
K - O ÷ K = BTp + W S V-

= K 1 ÷ K 2

(8-3-11)

(8-3-12)

where K* I is the optimal gain already found with respect

to the nominal values of the system parameters (corresponding to the

solution of min Jl)( and K_ the gain part that

minimizes the sensitivities of the performance index Jl" Note

that this control depends on the initial conditions and that the

independence of the gain is rediscovered only with respect to the

initial conditions with K_ = O.

How can equations (8-3-10) be solved to obtain an optimal

control?

If there is no structural stress,then equations (8-3-10) may be

solved by using a gradient method: from an initial gain matrix

stabilizing the system, four Lyapunov equations may be solved

successively and in the following order: (8-3-I0b) and (8-3-i0c)

then (8-3-i0d) and (8-3-i0e) then the gradient calculated and the
dJ,

gain reactualized by doing K+ K-a _-_ until convergence (a > O: no

progression).

If a structural stress is applied to the control, we suggest

using a projected gradient method and in this case the steps of the

method are those of Geromel's and Bernussou's algorithm, namely:

Step i: Initialization of algorithm by a gain K I
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stabilizing the closed loop system and satisfying the
structural stress.

Step 2:

Step 3:

Step 4:

Calculate matricial gradient equation (5-3-10), i.e.:
solve f (K i, pi) = 0÷ pi
solve g Ki, Si) = 0÷ Si

solve fl (Ki' pi, si, w_) = o ÷ w_

solve_ gl (Ki' pi, si, vi) = o ÷ vi

then BJ3

5"-K = J3K (vi' wi' Ki, pi, S i)

Projection of gradient to stresses, then determination of

feasible direction Gi: Gi = R (_K)
K c

where_KciS the projection operator on KC.

0ptimality test:

if llGill,¢ Stop

otherwise go to the next step.

/172

Step 5:

Step 6:

Look for an optimal progression step by solving the

monovariable problem:

rain J (K i _ a G i)

a > O

I.e. a = ai the solution

Calculate Ki+l = K i i G i- a and go to step 2.

Note that the initial gain may be obtained using Armentano's

and Singh's algorithm (see VIII.2.2.). It is evident that step 2

requires more computer time than the corresponding step of the

problem without minimizing the sensitivity of the criterion, as we

have two more Lyapunov equations for each iteration to solve: this

is the price of the robust control. The efficiency of the approach

essentially depends on the algorithm used for solving the Lyapunov

equations. Let us mention in this regard Hoskin et al's (HOS-77)

and Kleinman et al's (KLE-68) algorithms.
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The projection step remains the same in section Vlll.2.2.b.,

and consists of cancelling the terms corresponding to zero

Kij.

In order for the problem to keep a meaning for each iteration,

the gain obtained for each iteration must satisfy the stresses and

stabilize the system. The following lemma gives the conditions for

this to be the case:

Lemma 8-3-1

Let J(K) = K 6 Rmxp be the matricial function defined by

(8-3-8), differential relative to K, _/K such that stable (A-BKC);

therefore:

7

a) if %9

_; such that J(K-aG) < J(K) when G_Owhere G is t%(_ ojection of gradient d__J over the stress set
dK

represented by KC.

b) If (A,Q _) is an observable pair and matrix Xois

defined as positive, then the algorithm gives a stabilizing control

for each iteration.

Demonstration /173

This lemma was given by Geromel and Bernussou (GER-79a) to

demonstrate the stability of his algorithm; it is also valid in our case

and it may be demonstrated as follows:

a) By linearizing around a, we obtain (see GER-79c):

dJ(K-aG) I

J(K-aG) = J(K) + a -da -la=O (8-3-13)

using Kleinman's lemma (KLE-66) (see appendix 4), we may express:

dJ(K-aG) I Tr { -dJ T
da la:O = - (_--_) . G } (8-3-14)
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Let us replace (8-3-14) in (8-3-13), we obtain:

,dJ.T
J(K-aG) = J(K) - a Tr { t_-_) . G }

dJ

Since G = r[Kc(_-_),,where _Kc is the projection operator, then:

J(K-aG) - J(K) = a TR (GTG)

from which for G _ = O, there is an a > 0 such that J(KaG) < J(K)

b) Like K E KC' we have (K-aG) E K c thus it suf-

fices to show that J(K) is finite and consequently J(K-aG) J(K) <

Let us express J3 in the form:

j

J3 = Tr(P X ) + Tr(SPLPS) + Tr (RKC-BTp) SFS(RKc_BTp) T !o !
J

= J31 + J32 + J33 I

If (A,Q ½) is observable and D asymptotically stable,

then P is defined positive and with finite elements, i.e. 0 < P < 0:.

If Xo is defined positive and D asymptotically stable,

then S is also defined positive and with finite elements, i.e.

0 < S < m. We therefore have:

0 <P< _

0 <X<®
o

÷J31 = Tr(P X ) <®o

0 <P<=° I
0 <S < _ -_O <PS < ®

0 <L<=o

J32 = Tr (SPLPS) < =

R )0

K, C, B with finite
elements

} ÷ (RKc-BTp) S < ® J33 < ®

from which J3 = J31 + J32 + J33 < ®

with a) we have J(K-aG) <J:(K) <

/174

The gain verified for each iteration must therefore:
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i) (K-aG) E KC or (P(K-aG) > 0

ii) J(K-aG) < J(K)

Finally, with the same procedure for adapting the iteration

step, the algorithm flow chart is that of figure 8.2 while adding

two more Lyapunov equations.

Example 8-3-1

The algorithm proposed was used on a double precision IBM

370/165, for example (8 -2-1) and for the same initial data,

namely: a I = 0.I, _ = 1.2; _= 0°05; ¢= 1o-3, L = I, X = I, F = 0
0 :_

and K 1 is that of (8-2-16).

Convergence was obtained in 32 iterations, the suboptimal

gain being:

32
K

0.437 I 0_2351

..... -I- /
I 1. 526 O. 57 _

= I

L0.993 2.33 .L....

,I1.91 I

are:

The natural values of the closed loop system (with K32)

{- 2.018423 + 1.460728, - 4.44452 + 1.573168, - 6.438916, - 5.187874}

4

The initial value of the criterion was J(K 1) = 8.935 and at

convergence J3(K 32) = 3.232 and JI(K 39 ) = 3.049.

To compare with the results of example (8-2-1), note that the

value of J1 is almost equivalent to J(K 59) of example

(8-2-1) and J3 is 0.077 times higher than J(KI59); the

calculation time is twice as long as for example (8-2-1) (no

parameter variations).
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VIII.3.3. Minimizing the Sensitivity of the Performance Index

with Prespecified Degree of Stability

In this section, we bring together the results of the two

preceding sections, while determining a control minimizing the

sensitivities of the performance index, guaranteeing a prespecified

degree of stability according to Anderson's and Moore's definition

(see VIII.3.1) and verifying the structural stress applied.

The optimization problem considered is therefore:

2at (xTQxProb. 1 : min J(K) = f e + uTRu) dt

K E K C to

O

under : x = AX + BU

Y=CX

U =- KY

/175

According to section VIII.3.1, the solution to this problem is

equivalent to the solution of:

Prob. 2 : rain J(K) = f_(_TQ_ + _TR_ )dt

KE KC to

under: _ = X _ + B _ with _ = A +_ I

_:c_"

U=-K_

If the system parameters are given by their exact value, then

the solution to problem 2 is obtained by applying Geromel's and

Bernussou's algorithm to equations (8-2-7) after converting A

into ii. •

If the parameters are uncertain and are known by their

nominal value, then the solution is obtained by applying the

expanded algorithm proposed in the preceding section for equations

(8-3-10) by changing A to A.

If _ = O, we return to the problems of the preceding

sections.
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VIII.4 SYNTHESIS BY EXPANSIONAND CONTRACTION

In the preceding sections, we presented a few methods for

synthesizing decentralized controls while assuming that the system

could be decomposed into disjoined subsystems without information

sharing between subsystems. However in reality we find (traffic

regulation (ATH-67, ISA-73A), economical systems (AOK-76), power

systems (CAL-78, SIL-78)) as many systems do not have this

property, i.e. systems where information is shared between
subsystems.

The control of these systems may be calculated using

expansion and contraction techniques. The idea of this technique

is to expand (under certain conditions) the state space of the

system to have a space with a larger dimension (for equal limits),

which contains any information of the original space and which

reveals a decomposition into disjoined subsystems. Traditional
optimization techniques may therefore be used to calculate a

decentralized control in this expanded space. Then the expanded

control is contracted to return to the control used on the original

system.

VIII.4.1. Expansion and Contraction of the Problem

Let us consider system S defined bx;_

0

S : X = A X + B U X(o) = X
0

with X 6 R, n and U 6 Rm. The following criterion is

associated with this system:

= UTJ(X U) f_(X T Q X + R U) dt
0 _

0

with Q _ 0 and R > O.

(8-4-1)

/176

Let us associate the pair (S,J),

and criterion J are defined by:

"_ : _=X _+_u _(o) :_
0

J( ,U) = _T Q X +

0

with (S,J) where system
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with _ _o , _ > ot _R B & B )n

I.e. the linear transformation:

_=TX (8-4-2)

where T is a matrix of dimension _ x n of full rank. Note by X(t;

Xo, U) and by _(t; _ u) the states of systems S and _ for
0 _

the initial conditions Xo and _ _nd the fixed input U0

Ikeda et al (IKE-81) use transformation T to connect the pairs

(S,J) and (_,_) in the following inclusion context.

Definition 8-4-I (IKE-81f)

The pair (g,_) includes the pair (S,J) if a matrix J exists

such that, v x of S the choice:
._)

X :TX
o o

of the initial state of S implies that:

(8-4-3)

x(t; x , u) = z_ _'(c; x , u)
o o

a(Xo, u) = _ (Xo, u)

_ t > 0

the fixed input U (T I generalized inverse of T).

If the pair (S,J) includes the pair (S,J) then (S,J) is said

to be an EXPANSION of (S,J) and (S,J) is a CONTRACTION of (S,J).

Note that the optimization problem associated with (S,J) is

equivalent to that associated with (S,J) if (8-4-3) is verified.

If transformation (8-4-2) is applied, then the matrices of

the expanded system and of the original system are connected by:

TAT I= +M, _ =TB+N

(TI) T Q T I

= +MQ & _=R+N R

where M, N, MQ and N R are constant matrices observing

the conditions below:

/177
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Theorem 8-4-I (IKE-81)

The pair (_,_) includes the pair (S,J) if

or

a) MT = O, N= O, T I M0 T = OandN. = 0

b) ?I M i T = O, T M i-_! N = O, MQ M i-I T = 0

MQ M:1"-1 N = OandN R = 0 l=lt2,...,"_

Under what conditions is control u = -K X "contractible" into

U: = - KY?

Definition 8-4-2 (IKE-81)

m

The control law U = - KX of expansion S is contractible into

U =- KY to control the original system S. if Xo = T Xo implies

K X(t; Xo,U)= i<X(t; _, U)W_t _>0 and for any fixed input U.

It is easy to see that if MT = 0 and N = O, then control -K X

is contractible into - K X, with K = K T.

Let us recall that the reason for this development is that

the control is calculated for the expanded system S using a

standard optimization technique. This control is then contracted

to apply it to the original system S.

VIII.4.2. Overlapping Decomposition

Given system S of (8-4-I), let us assume that it is of order

n and that its state is decomposed into three components X1, X 2 and

X 3 of dimension nl, n 2 and n 3 respectively:

T X3 )TX = (x1T X 2

and n = n I + n 2 + n 3

let us assume that the system has two control stations, i.e.:

U:(u z u)
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m I m 2

with U I _ R , U2 _ R & m = m I + m2 . The

1
system may be :described by:

Let us decompose the state into two overlaooin.q

_1 = (x1T xT) T _- _

_2 : (X2 xI)T

(8-4-5)

components:

then the expanded state vector is:

to X by:

T XT)TK = (Xi and it is related /178

X=TX

T being the rectangular matrix of dimension n x n with

= n I + n 2 + n 3

and defined by:

T =

I

where If, 12 and 13 are unity matrices of the appropriate

dimensions.

We have seen that this transformation defines an expression

where:
"_ : X = A X + B U

TAT I= + M B=TB+N
I

Note here that the possibilities in T, M, N are not unique

(IKE-81), Ikeda et al (IKE-81) retain the following selections:

218

TI=[I 0 0 0 ]
%I 2 %I 2 0

0 0 13

S =

li %A12 -%A12

%A22 -%A22

-%A22 %A22

-%A32 _A32

0 and N = 0



Therefore the expanded system S becomes:

_': =

Lx2J

m

I
A11 A12 1 O A13

A21 A22 1 O A23

A31 0 I A32 A33

_BII I B12'

B21 I B22

B31 I B32

i

By comparing systems S and _, it is clear that the

decomposition of S is disjoined and a standard optimization

technique may be used to calculate the control of each subsystem

separately.

Expansion S may be represented as two interconnected systems
O

TI : ][i = AI Xl + B'I UI + X'I2 _'2 + BI2 U2

O _ _

_2 : X2 = A2 X2 + B2 U2 + _'21 X'I + _21 U1

where
All A12 B1

LA21 A22 21

_2 = [A22 A23] & _2 = [B22]

L_ _J ' L_d
are matrices of the coupled subsystems:

ant}

-DsI: _i = AI- --XI+ B1 U1

D _2 - --SI : = A2 X2 + _2 U2

i A13A12 =

A23
I' _-2_L_3_o %2 L_22J

are interconnection matrices between subystems. Let us associate

the following criteria with the decoupled subsystems:

-T- - z_i ul) dc71 (_i0' Ul) = /®(X1QI X1 + U1

O

-- + T _2 U2)dt_2 (x20, u2) : F'(_2 _2_2 u2
o
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m

where X1o , X2o are initial states

of the matrices of appropriate dimensions.

with

is:

-D _ -D _71 72 _i _ _2of sl s2 , , .

_(_ , U) : f'(_T _ _. + UT'_ U) dt
o

o

: diag(_l , _2 )

The global criterion

according to part a) of theorem (8-4-1), it is concluded

that _(%,u) is an expansion of J(Xo,U ) :

, U TJ(X U) = i_ (X T Q X + R U) dt
o

o

with

Q =TTQT R =_

J(Xo, U) : criterion associated with the original.

At this level, the decentralized control of the expanded

system is calculated, i.e.:

/180

U2 _2 _2 I

-D -D

so as to optimize the decoupled subsystems sl and s2

criteria _I (x'lo'u1)and Y2 (X-2o'u).

contraction of K, given by:

relative to

The overall control is the

r__io.1[ -l_ 1 K12I o o

L o :%j o ,_-_ <-_
, !

and the control to be installed on the original system is the con-

traction of K, given by.

m

K=KT=

0 K23 K2

The. calculation of the suboptimality index of the solution

may be found in (IKE-81) (SIL-82a).
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Recently Ikeda and Siljak (IKE-84) expanded the inclusion

principle, used here, for a unified treatment of input, output

and sate expansion and contraction. For more details refer to

(IKE-84).

VIII.5. OTHER SYNTHESIS METHODS

Other methods of synthesizing decentralized controls are found

in literature, in addition to those presented here:

-Hierarchized Computer Methods:

.Hassan's and Singh's {HAS-78b} algorithm with 3 calculation

levels,

.Hassan's, Singh's and Titli's (HAS-79) algorithm with 3 cal-

culation levels,with prespecified degree of stability,

.Xinoglas', Mahmoud's and Singh's (XIN-82) algorithm with 2

calculation levels.

-Computer Methods Using an Interconnection Model:

.Use of a general interconnection model (HAS-78a),

.Use of a follower model (IHAS-80, CHE-81).

In the text below, we will discuss in detail only Xinoglas',

Mahmoud's and Singh's algorithm, the most recent of the algorithms

given.

VIII.5.1. Algorithm With Two Calculation Levels by Xinoglas,
Mahmoud and Singh

Xinoglas, Mahmoud and Singh (XIN-82) treated the problem of

determining a decentralized control by state feedback U = - K X

by minimizing the traditional quadratic criterion:

i U?
J = _ I® (X T Q X + R U) dt X(o)

0

and satisfying the structural stress K(Z.K s such that:

/181
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Ks = {K / K = diagonal block and stable (A-BK)}

We have seen that the associated optimization problem is

expressed:

= KTrain J Tr { (Q + R K) S}

K_ K S

under g(s, X ) = S(A-BK) T + (A-BK)S + X
O O

wi th x = E { X(o) xr(o)} = diag (X.)
p I

=0

Let us express:

A d = diag { A}

A° = A- Ad I
then the problem is written:

rain J = Tr { (Q + K T R K) S}

K_ KS

under g(s,x ) S(Ad-BK) ro = + (Ad-BK)S + Z + X

Z = A S + S A T o
O O

= 0

The Langrangian associated with this problem is:

L= Tr {(Q + KTRK) S } + Tr { P g(S X )} + Tr {T(A S - SA T - Z) }
P 0 0 0

the optimality conditions give:

___L= 0
_T

_L
-- = 0

_z

3L
-- = 0

_P

_L
-- = 0

_s

_L
- 0

BK

.+

.).

Z=AP+PA T
O O

T:P

_,tAd-BKl S + S(Ad-BK) T + Xo + Z = 0

( Ad- BK) TT+T(Ad-BK) +Q+ KTRK+ATp+PAO O

K = R -I BT Md Sd I

M d = diag {TS }

Sd = diag { S }

= 0
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To solve these optimality conditions Xinoglas, Mahmoud and

Singh (XIN-82) propose the following two level algorithm:

Step 1: Arbitmarily select an initial decentralized gain Km,

Step 2: If (Ad-B Km) is stable, go to step 3.

otherwise use Armentano's and Singh's algorithm (see

VIII.2.2) to calculate Kin6 _a"
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Step 3: Begin the two level calculation algorithm by selecting

2 m and Tm. Send them with Km to the 1st level, m=l.

Step 4: At the 1st level, solve equations (8-5-1) and (8-5-2)

using Bartel's and Stewart's technique (BAR-72), send

Sm and T m to the second level.

Step 5: Calculate new predicitons of Z, P and K as follows:

zm+l : A sm + Sm A T
o o

pm+l = Tm

If the conditions:

IIz'+1_ zmI{<_z

lip_+i - P_ll<

ll,e+z - K_ll <_ t
are satisfied, then Km+l is the optimal solution searched for,

otherwise calculate zm+l, pm+l and Km+l

Zm+l : c I Zm + d Iz m+l

pm+1 c2 pm pm+l
: + d2 m+l

Km+l = c 3 Kp + d 3 K

where the constants cj and dj satisfy cj + d m = 1 for j=1,2, and 3.

_Z' _P' _K are small positive constants (precision).

Go to step 2.

223



Remarks

1 - The calculation is divided into two levels. At the Ist

level, two Lyapunov equations are sovled and, at the 2nd level,

a prediction routine is used - numerical correction (SlN-78a).

The convergence of thealgorithm amy be analyzed as width the two

level optimization algorithm CSIN-78a).

2 - The algorithm proposed requires less computer time than

Geromel's and Bernussou's algorithms (GER-79a) and Chens, Mahmouds'

and Singh's (ICHE-84) algorithms. For example the authors installed

the algorithm on PDP-IO and treated example (8-2-1), the initial

control being:

K1 :

I? I

,9004 o, 2487 1-

I 1,143
I
I 0,6536

1
0,4902 11 /

I
2,219 j

I 1,184 0,3

convergence was obtained in 9 iterations for the fol

gain:

I 1.191 0.375 I

i-

K9 = 1 1.601
I
L o.9343

with the value of criterion J(K 9) = 2.718.

owing optimal

2.273 _!_ ....

1.613

The CPU time was:

/183

initial block diagonalization 2.56 sec

suboptimal block diagnalization 7.2 sec

(see remark 4 of section VIII.2.3)

VIII.6 CONCLUSION

In this chapter, we essentially presented methods for syn-

thesizing decentralized Cstatic*) controls of linear systems in

the absence of fixed modes. We focussed particularly on paramet-

ric optimization techniques from which we proposed an algorithm

*For dynamic control synthesis, see appendix 5.
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for calculating a robust control with variations of the system

parameters and assuring a prespecified degree of stability for a

closed loop system.

CHAPTER IX - DECENTRALIZATION OF THE CONTROL OF THE WATER-STEAM
CYCLE OF A SHIP

IX.1 INTRODUCTION

/185

The purpose of this chapter is to apply the results developed

in the previous chapters to the model of a water-steam cycle of a

ship ("Chevalier Valbelle" of the "Chargeurs R_unuis" Company).

We briefly describe the boiler by presenting a mathematical

model, patterned after the identification made by Piasco and Diep

(PIA-79), from which we develop the synthesis of the control of

this system.

IX.2 DESCRIPTION AND MATHEMATICAL MODEL OF THE PROCESS /186

The fundamental diagram of the water-steam cycle is depicted

in figure (19.1). The steam produced in the balloon is overheated

before being sent into the turbines (ihigh and low pressure), which

may develop a power of 38,000 HP to propel the ship at 24 knots.

After expansion in the turbines, the steam is condensated in the

capacitor and the condensated water is reheated then is sent into

the balloon by a turbo-pump.

The part of the cycle we are interested in here is the steam

generator unit which is made up of a balloon and two overheaters,

subjected to the action of the furnace: the balloon receives the

supply_,of water, and produces saturated steam, which is then d_ied

through two overheaters. The combustion is regulated by an air-

fuel mixture (iload signal)which supplies the burners.
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I

!

i Overheaters

g

Reheater
Q

Condenser

Turbopump

Fig. 9,1 - Water-Steam Cycle

The boiler characteristics are:

.vaporization rate: 58/65 tons/hour

,overheated steam pressure : 62 bars

.overheated steam temperature:513°C

.Fuel rate: 7/9 tons/hour

/187

The boiler has 4 input magnitudes (3 controls and one per-

turbation) which are:

QC load signal (fuel and air rate)

QEA feed water rate L

QED cooled overheated water flow rate J
QV steam flow rate at turbine intake }

and three outlets-which are:

controls

perturbations
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PS Steam pressure at overheater outlet

TS Steam temperature at overheater outlet

NB Water level of balloon

IF we consider thBt the intakes are valve opening controls

UEA, UC and UED which control the flow rates QEA' QC and not the
flow rates themselves, then the diagram of figure (9.2) shows the

main elements of the system sutided and the different intake and

outlet magnitudes. -i-

Uc

Qv

VALVES

3-

m

Qc

, ° , _

QED

!
!

I

I
Qv

i

Fig. 9.2 - Physical Model

Key: 1-Steam flow rate QV; 2-Feed water flow rate QEA;

3-Load signal QC;
5-Balloon;

6-Balloon pressure;

8-Overheaters;

4-Cooled overheated water flow

rate QED

7-Load loss (overheater);

9-Balloon level;

lO-Steam pressure PS; 11-Steam temperature.

NB

The transfer diagram of the installation is given by Piasco

and Diep t(PIA-79) (fig. 9.3). This figure shows that the per-

turbational inlet QV (steam flow rate) alone affects the two

blocks of the diagram (dotted line) and therefore the modes cor-

responding to these blocks are uncontrollable in a decentralized

/188
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u,o,I_1 itls 1.2_

l
I

P
S

U(o I - 17s
1.2.5s 1.17Ss * gOOOs2

4

Fig. 9.3 - Transfer Diagram of the Model

manner. Consequently, they cannot be controlled by an output

feedback, regardless of the nature of this feedback. This allows

us to simplify the block diagram of fig. (9.3) by eliminating the

blocks corresponding to these uncontrollable modes to consider on-

ly the controllable and observable part of the system. We thus

obtain the block diagram of fig. (9.4).

The state representation of the system of figure (9.4) is

given in plate (9.1), and the modes of the open loop system are:

IX,3 DECENTRALIZED CONTROL BY DYNAMIC OUTPUT FEEDBACK

IX.3.1. Characterization

/189

The process to regulate has a control structure in which we

may distinguish three main interconnected loops:
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Fig. 9.4 - Transfer Diagram of Mode (Without

Perturbation)

rs
P

I

(or U

-The balloonN B level, controlled by the feed water rate AEA

EA ) and subjected to the influence of the load signal QC"

-The temperature at the outlet of the 2nd overheater T s, con-

trolled by the water flow rate of cooled overheated water QED (or

UED) and influenced by the load sigal _C (or U c) and by the feed

water rate QEA (or UEA).

-The steam pressure at the collector PS' controlled by the

load signal QC (or u c) and aff_ected by the feed water flow QEA

(or U _.
EA

To control these loops, we select an output feedback control

with a completely decentralized structure, i.e.:

{ O, - 0,00181, - 0,0076% - 0,00972 + 0,00405j, 0,03333,

- 0,4, - 0,4, - 0,5, - 0,6666, - 0,6666, - I}
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/191

To affirm the existence of a decentralized control of form

(9-3-1), we will test for the existence of fixed modes, with re-

spect to this structure, using two methods:

IX.3.1.a. Sensitivity Algebraic Test

Application of algorithm (14-5-1) to the system shows that

s = - 0.00769 est a type i structural decentralized fixed mode,

the sensitivity matrix of this mode with respect to the control

being:

I- 0.8278 x i0 -17 I - 0,ii04 x I0-171 0 24 x 10 -6

I -- -- J

I

SK (s=-0,00769) = 0_3852 x 20-17 I 0,5002 x 10-18 -0,1 x 10-6

- 0,5435 x 10-31 - 0,7246 x 10-32_ 0,1576x10 -20

(9-3-2) /

,/

This matrix shows that the mode in question is sensi;tive

(for an accuracy of i0 -6) only to elements k13 and k23.

IX.3.1b. Graphic Test

The directed graph associated: with a closed loop system (de-

scribed by the state equation of plate (9.1) and a decentralized

control Kd) is given by fig. 9.5. Application of theorem (5-4-1)

shows that the system ahs a typei structural decentralized fixed

mode corresponding to the sate peak x4, because this peak is not

contained in a highly connected component of the graph.

The system therefore has a _table type i structural fixed

mode in s = - 0.00769, and a decentralized dynamic control may

stabilize the system, but a _ree pole placement is impossible

/192
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Fig. 9.5 - Graph Associated With the System

/191

with this structure. Since the fixed mode is located very close

to the imaginary axis of the complex plan, we consider it to be

insufficiently stable, Therefore the problem is to find a struc-

ture making it possible to avoid this fixed mode, i.e. permitting

a free pole placement of the system.

IX.3.2. Control

IX.3.2a. Stress Relief: Looking For Supplementary Links

According to the sensitivity matrix SK of (-3-2}, the mode s =

- 0.00769 is sensitive to feedback loops k13 and k23. Assuming

that the costs associated with these two loops are equal, we have

two possible structures:

K I = k22 and K 2 = k22 k23

k23 k33 ]

Remark:

This result may also be obtained according to the syBtem

graph by determining the feedback loops which form a highly con-

nected component containing peak x4. Note that these solutions

are not optimal, because an optimal solution contains max (m,p) =

3 feedback loops.
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IX.3.2.2b. Stress Relief: Selecting the Structure

Let us apply the procedure proposed in section (VII.3.3b.) to

this example. The arc sets associated with the state peaks of the
system are (TAR-85c):

KxI = {k11,k21}

Kx2 = {k21,k22,k23 }

Kx3 = {k11,k12,k13,k21,k22,k23 }

Kx4 = {k13,k23}

Kx5 = { k23,k33,k13}
K
x6 = {k23,k33,k13}

note that:

Kx7 ={ k11,k12,k13 }

Kx8 ={ k11,k12,k13,k21,k22,k23}_

Kx ={ k21,k22,k23 }

K9={ }

KX'Io k21'k22'k23
= {k33 }

KX11 {
x12 ki°3'k23' k3"3}

KxiC Kx 8 = Kx3 K4C Kx12

= ----K

Kx2 = lx9 = KXIoC Kx 8 Kx3 Kx7C Kx8 x3

K = K
KxIIC Kx 5 x6 x12

therefore the arc sets to consider are only: /193

but K n
Xll.

K , & K
x I' Kx2 Kx 4' Kx 7 x11

K = _) i=1,2,4, 11.
X_

k33 is necessary. The problem is therefore:

Find K* such that :ard (K /_ K ) = 1
X.
1i.e.

Z = Kxl U Kx2 U Kx4 U Kx7

Matrix L is (-see Vlll.3.2b.)

L [ iooo ]1 1 1 0

0 0 0 1

0 0 1 0

i=1,2,4,7

= { k11,k21,k22,k23,k12,k13} !

= { Zl,Z2,Z3,Z4,Z5,Z 6 }
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The solution to this problem is given by sovling the fol-

lowing linear program (assuming that the costs associated with

feedback loops are equal):

min (wI +w2 +w3 +w4 +w5 +w6)

under wI + w2 _,I

w2 + w3 + w4 _ I

wI + w5 + w6 >_ 1

w4 + w6 _ I

i=I,...,6

the resolution of this problem gives two solutions:

wI = (I o o I o o) T and w2 = (o I o o o I) !
i

with a minimum cost equal to 2. Let us add to these solutions

the feedback loop k33, we obtain the two following structures:

K3=/ 'k231 and : [I __L-L-
these structures are optimal because they contain only three feed-

back loops.

The control structures (IK1, K2, K3 and K4) thus assure the

absence of fixed modes. Consequently, the stabilization and _free

pole placement of the system, using a dynamic control with one of

these structures, are possible.

The synthesis of decentralized dynamic controls _decentralized

observers) is not treated in our paper. However we show in appen- /194

dix 5 that this problem is reduced to the synthesis of deaentralized

static controls of an augmented system. Accordingly, the synthesis

of a dynamic control will not be discussed in this example,

IV.4 DECENTRALIZED CONTROL BY STATIC OUTPUT FEEDBACK

According to the results of section VII.4, free pole placement

of the system by static feedback is feasible only if the graph
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associated with a closed loop system contains 12 circuits of di-

mension 1,2,3, .... ,12, each of these circuits containing an arc

associated with a different feedback loop. Consequently, a free

pole placement of the system is not feasible even with a centnal-

ized output feedback *as defined above) as n = 12 > mxp = 3x3.

However, decentralized stabilization by the structure:

K = k22 k 2

0 k33 ]

is structurally feasible, as the necessary condition of the absence

of fixed modes is verified. Additionally, the modes to be stabil-

ized of the system are those associated with states x I, x 5 and x 6

which may be influenced by feedback loops kll (for x I) and k23 and

k33 (for x 5 and Xo).

Minimization of the criterion:

= (yT Tf y + u u) dt
o

suing Geromel's and Bernussou's algorithm (_see VIII.2) for initial

data:
I

a = 0_I, II= 1,2, v=

I:°ilK (1)= - 2

0 -

0_I, C = 10 -3 , X = I

0 \

is achieved after 40 iterations, the optimal gain matrix being:

- 1,014 0 0 I

K (40) = 0 - 0,5578 - 0,1199

0 0 0,07796J

The initial value of the criterion is J(K C1)

the convergence J(K (40)) = 567.37.

= 1087.6 and has

The natural values of the closed loop system (with K (40)) are:

{ 0.999813, - 0,67691, - 0,666941, -0,503396, - 0,383232, - 0,400105,

- 0,030752, - 0,009649 _ 0,005297, - 0,00518 _ 0,001301, - 0,007476}
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To return to the problem of pole placement of the system,
we have seen that the only way to accomplish this is to relief

structural stresses. Accordilng to the graph associated with the

system (fig. 9.5) we see that to have a circuit of dimension I
(containing an arc associated with a feedback loop) there must be

an arc associated with the state feedback loop x 7 or x 9 or Xll
which is not accessible for measurements. Therefore it is nece-

ssary to consider a dynamic control to achieve free pole place-

ment. However placement of the_ll poles of the system is feas-
ible only usi:ng other outputs of the system as shown below.

/195

The system has two time scales, its modes are therefore de-

composed into two groups: fast (.modes associated with valves)

and slow Cmodes associated with the_process). If the system out-

puts are redefined by outputs of the slow part {same outputs as

before notated YI' Y2 and y3 ) and outputs of the fast part (i.e.

outputs of valves which are accessible for measurements and repre-

senting flow rates QEA' QC and QED ) then the output vector

Y (Y E RP*, p : 6) becomes:

ry,

IY 2

Y=
Ysl

.Y6 ]

• NB

PS

QEA

qc

QED

1 o o o o ol

o o 1 o o o I 0I
0 0 0 1 -0,17 II

_o t o o

0 1

0 0

0 0
I

([_) i o o o o

Io o o I

"xI

_x6.

x7

x 12J

The feedback matrix is therefore of dimension m x p* = 3 x 6.

Let us consider a decentralized control matrix (decentralization

of two scales as follows):

Q

;_]
, I k14 e

Kd: '....
L. 22 i I k25 i

, 4 --__I_ k
I k33 I !

" J ' I

According to the system graph (fig. 9.5) the system has a type i

structural fixed mode (that associated with the state peak x4),
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and to eliminate it, one of the elements k13 or k23 must be elim-

inated. The two following structures are therefore obtained:

...... I.... I I - ! --- l
Ks I , koo , J , k_. I / K6 " ,

I , _ .j___ j . :J , l = k22 I k23 I ! k25 I

I ---_ k33-; _---r_J 1%3 : .... '-_6]-"

which permit free pole placement by dynamic control and stabiliza-

tion by static control.

Minimization of: * T
/_ (y*T Y + u u) dt

o

using Geromel's and Bernussou's algorithm, for the initial data:
I

a = O,I, _= 1,2, _: 0,01 ¢= 10 -3 , X = I/
o

[ :]/2 0 0 I -0, 2 0

K (I) = O -I 0,5 l O -0,5

I
O O -0,8 I O O -0,7

is achieved after 147 iterations, the optimal gain matrix being:

I_ I 1,462 O 0 i

1,69 O O I - /

K(147)= - 0,4953 - 0,0992 I 0 -_0,3526 _0

0 0 0,0481 ,! 0 0 - 0,4578

The initial value of the criterion is J(K (I) = 1023.02 and

at convergence K(K C147)) = 653.93.

The natural values in a closed loop (with K (147)) are:

{- 0.531 _ 0,6077, - 0.75 _ 0,3103, - 0,5335 _ 0,3587, - 0.0316,

- 0.00396 _ 0,00109, - 0,00765, - 0,0097 _ 0,004688 }

Remarks

/196

1 - According to the system graph, the structure:

ITkk- 7-_ -7 k '
11.L 12...[ _13 ! k14

T k26
mo o9
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permits free placement of II system poles (in the graph associated

with the closed loop system there are 11 r.elease circuits 2, 3, 4,

...,12 containing arcs associated with different feedback loops.

Minimization of the aforementioned criterion suing Geromel's and

Bernussou's algorithm, for the same initial data above and for:

I oo:I- 2 0.5 0,6 I

K(1) = -0 5 - 1 0.3 , 0 -0,5

0.3 -0,6 ', 0 0 -0,?

gives at convergence (after 169 iterations) the following optimal

gain matrix:

- 0_683 O,3072 0.2948 I- O.3055 O O

K(169)= - 0.2809 -0,4554 -0.008897 II O -O.3138 O

I
v.u_uo 0 O 0 -O°3101

The value of the criterion is J(K (I)) = 916.69 and at con-

vergence J(K (169) = 629.41 The natural closed loop values (with

k (169)) are:

{ - 0,74988 _ 0.280153, - 0,530897 _ 0,246674, - 0,533509 _ 0,285356, /

- 0,031696, - 0,003437, - 0,005077, - 0,007722, - 0,009727 _ 0,004655}

/197

2 - Analysis of the system under study in this chapter as

a system with two time scales is performed by Chemouil (CHE-78).

IX.5 CONCLUSION

It was not easy to find a model of the physical process

establishing unstable fixed modes.

However the example considered here, even if it is not suf-

ficieni_, as far as we are concerned, illustrates the possibility

of applying our results to real situations.

238



GENERALCONCLUSION /199

Large systems are characterized by a large number of con-

trol and measuremE}nt variables and are generally distributed

geographically. To apply them to a traditional centralized con-

trol would lead to a too sophisticated regulator or to a too com-

plex communication network, This is the reason for a "DECENTRAL-

IZED CONTROL" which is moreover favored by technological and econ-

omic progress in mini and microcomputers. These decentralization

stresses reveal theoretical linear problems.

Among the problems for linear and time-invaraint linear dyn-

amic systems, we f_ocussed on the problem of pole stabilization and

placement by output (or state) feedback when decentralization

stresses are taken into consideration. The conditions for the

existence of a solution to this problem are given by Wang and Davi-

son (WAN-73b) in terms of FIXED MODES which are invariant modes of

the system with respect to the control structure applied: decentral- /200

ized stabilization is impossible if the fixed modes are unstable,

and their presence makes free po}e placement impossible (ch. II).

Owing to this important result, we have selected to focus

our study on the notion of fixed modes by asking ourselves the

following questions:

*How can fixed modes be detected (or characterized)?

What is their physical meaning?

*What can we do when they are present? How can they be

avoided?

*How can decentralized controls be synthesized in the ab-

sence of fixed modes?

Our first objective was therefore to provide an overview of

methods for characterizing and detecting fixed modes and that

exist in literature (ch. Ill. IV and V). This allowed us to un-

derstand the nature of fixed modes. We provided two possible
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interpretations:

.in terms of transmission zeros of certain subsystems.

.based on the notions of controllability and observability.

Actually, the notion of decentralized fixed modes is an ex-
tension of the notion of uncontrollable and/or unobservable fixed

modes, in a decentralized manner, which are decomposed into two

types:

Structurally uncontrollable modes under structural stress

(type i and ii listructural fixed modes) which are associated with
the system structure.

Structurally controllable modes under structural stress

(nonstructural and structural type ii 2 fixed modes) which are as-

sociated with perfect equalities of certain system parameters.

WE have tried to unify the different results obtained with

respect to these two types of fixed modes, and have developed a

method of characterization based on the notion of the sensitivity

of antural values, making it possible to test their existence and

determine their nature.

Then we considered the problem of pole stabilization or place-

ment in the presence of fixed modes. Since the presence of fixed

modes is associated with the structure of the system or with equal-

ities between paramters, then a change in the nature of the control

or of its structure may solve the problem.

We have demonstrated Cch. VI) that the use of UNSTATIONARY

decentralzied feedback laws {quantification of the control, time-

variant feedback laws, nonlinear control) may stabilize structural-

ly W_ontroll_ble fixed modes in a decentralized manner, and showed

(_ch. VII) that stress relief of structures is the most natural

/201
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way to eliminate fixed modes. In this regard, we added the fol-

lowing three procedures to methods that already exist in litera-

ture for determining optimal control structures (with respect to

the number of feedback loops or their associated cost): one is

based on the notion of mode sensitivity and the other two are bas-

ed on notions of graph theory.

Moreover, since fixed modes are defined relative to the Out-

put or state feedback control, then the use of another control

principle (vibrational control, anticipation control) may stabilize

the sytem. In this regard we have shown (ch. VI) that a vibration-

al control may stabilize the system for any type of fixed mode,
and demonstrated the conditions for the existence of decentral_ized

vibrational feedback laws for stabilizing nonstructural fixed modes.

At this stage, we posed the problem of snthesizing decentral-
ized (or;quasi_decentral_zed);_static controls!in the absence of

fixed modes. The answer to this problem is given in chapter VIII

which presents a synthesis of most of the existing algorithms. We

a],so considered the problem of synthesizing robust controls Cresis-

tent to system parameter variations), and proposed a synthesis al-

gorithm by parametric optimization which uses the method of the

projected gradient (initially developed by Geromel and Bernussou)

and which makes it possible to obtain a robust decehtralized con-

trol (minimization of the criterion and of its gradients with re-

spect to system parameters).

Finally, in addition to the numerous small illustrative exam-

ples presented in the different chapters, we devoted chapter IX

to the application of different methodologies developed in our

paper on the model of a steam generator of a ship. We analyzed

the system and proposed a quasi-decentralized stabilizing control,

as the system ahs a type i decentralized structural fixed mode.

We believe we have thus_ made a large enough synthesis of
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the problems arising when decentralizing continuous linear dynamic

systems, and the solutions which may be applied to them. Never-

theless, we regret not having enough time to solve the problem
of the synthesis of dynamic controls (observers) under structural

stress: this problem may be reduced to the synthesis of static

controls of an augmented system (appendix 51, but remains the pro-

blem of reducing dimensions for the selection of a minimal observer.

Another important point is that of pole stabilization and

placement using static decentralized controls: this problem has

not yet been totally solved, as if we presented the conditions for

the existence of such a control, to our knowledge, there are no
systematic methods in existence for determining the control struc-

ture and this point remains to be investigated.

/202

Let us point out that in this paper we considered only contin-

uous linear systems, but the problems associated with fixed modes

arise also for decentralized discrete systems, for which nothing

has been done.

Finally, let us note that many complex physical systems are

by anture stochastic processes which removes us from the determin-

istic approach that we have retained and leads us to the vast area

of deCentralized stochastic controls.
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APPENDIX 1 /205

ZEROS IN MULTIVARIABLE SYSTEMS

The following multivariable linear system is considered:

o

X(t) = A X(tO + B U(t}

Y(.t) = C X(t)+ D U(t)

where xER n, UER m, yERP are state, control and output vectors,

respectively, A, B, C, D are constant matrices of the appropriate

dimensions, n > 1, m >__1, p > I and max (m,p} <__n. The polynomial

matrix:

B]jP(s) =

D

is called "system matrix" (ROS-70).

expression for P(is) is:

I diagO(Sl I 0

''''' sr)l r,p-r

S(s) ...... -I-
! 0

L m-r,r I m-r,p-r

If r = rank P(s), then Smith's

1

where the s i are invariant polynomials of P(s) (s I divides Sl+ 1

given by (GAM-66):

Mj

s i - j=l,2,...,r with Mo = 1
Mj -1

and where M. is p.g.c.d, of all minors of order j of P(s).
O

In the frequency range, the system is described by its trans-

fer matrix:

N(is)
G(s) : C(sl-A) -1 B + D = d---(-s)

if r - rank G(s), Smith's - McMlllan's expression of G(is) is:
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I ]" I r,p-r
I

H(s) = I--
0 I 0

m-r,r I m-r,p-r
I

is the i-th invariant polynomial of N(s) divided by thewhere

characteristics polynomial of system d(s). Note that Ei+l(_i+ 1)

divides _i+1(_i+1 )"

It seems that Rosenbrock (ROS-70) was the first to treat and

define the zeros of mulivariable systems in an appropriate and un-

derstandable manner. He introduced several zero notions (invariant

zero, decoupling zero,...) of multivariable systems. Currently,

the following zero concepts are found in literature:

ZI: Zero Element {E.Z.):

The zero elements are all roots of numerators of elements

gij(s) of the transfer function G(s).

Without forgetting the role and significance of these zeros

for monovariable systems, these zeros do not have a special mean-

ing for multivariable systems.

Z2: Decoupling Zeros {Z.D.) CROS-70)

These zeros are associated with the decoupled modes of the

system, they are s values for which the rank of one of the matrices

and/or (SIcA) _ is not complete.(sI-A B)

These zeros are therefore uncontrollable and/or unobservable

modes of the system, and do not appear in the transfer matrix (be-

cause of the presence of a Dole-zero simplification). They are

decomposed into input decouDling zeros (Z.d.e.) (uncontrollable

modes), output decoupling zeros (z.d.s) (unobservable modes) and
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input-output decoupling zeros (z.d.e.s.) (uncontrollable and unob-

servable modes, we have: Z.D. ={z.d.e.}U(z.d.s.}-{z.d.e.s.}

Z3: Transmission Zeros {Z.T.) (ROS-70)

These zerosa are the set of roots of all numerators, expressed

by Smoth - McMillan as G(s). In terms of G(s) minors, they are the

set of p.g.c.d, of the numerators of all minors of G(s) order r

after adjusting these minors to have d(s) as a common denominator.

The Z.T. appear as zeros of certain G(s} elements and as poles

of other elements. Physically they are associated with the trans-

mission properties between intputs and outputs (see MAC-76). Note

that Rosenbrock called them "zeros of the transfer matrix".

Z4: Invariant Zeros CZ.I.)

These are the set of roots of invariant P(s) polynomials. In

terms of P(s) minors, tbey are p.g.c.d, roots of all minors of a

maximum PCs) order.

These zeros are transmission zeros plus a few decoupling zeros. /207

ZS: System Zeros CZ.S.} (ROS-74}

The system zeros are the set of p.g.c.d, roots of all P(s)

minors in the form P l'2'''''n'n+il'''''n+ik where the maximum

1,2,...,n,n+j l,...,n+j k

nominal value of k is _ with o,< _ ,< rain (re,p).I

These zeros are the Z.T. set plus the Z.D. set.

Z.S. = Z.T. U Z.D.
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Note that the Z.I. set is a Z.S.

subset as shown in Vann's diagram to

the right, and that if the system is

controllable and observable, then the

Z.S., Z.!. sets (defined from the i'

P (s)) and Z .T. (defi ned from the G (s) )

coincide because the Z.D. set is empty.

The zero sets above are all defined in terms of P(s) and G(s)

minors, or in an equivalent manner in temrs of their invariant pol-

ynomials. However other definitions are found in literature in

terms of frequency for which the rank of matrices P(s) and G(s)

diminshes. These definitions are given below:

Z6: Wolovich (WOL-73al

The zeros of the controllable and observable system (A,B,C,D)

are z xomplexes which verify:

rank PCz)<rank P(S)

Z7: Wolovich (WOL-73b) and Desoer & Schulman (_DES-74)

The transfer matrix may be factored out into G(s) = V(is)

T'l(s) + D, where V(s) and TCs} are right prime polynomial matrices.

Therefore the zeros of the system are z complexes which verify:

Rank V(z) < rank VCs)

It is evident (except for multiole zeros) that definitions

Z6 and Z7 are equivalent to Rosenbrock:,s definition Z3.

Z8: Davison and Wang (DAV-74 and 76c)

The transmission zeros of system (Z,B,C,D) are complex z

numbers which verify:
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rank P(z)< n + min(m,p),

in oarticular, the transmission zeros (including multiplicity)

are roots of the p.g.c.d, of all minors of order n + min(m,p) of

P(s).

Note that if rank PCs) < n = rain(re,p) then all points of the /208

complex plan are zeros of the system (degenerated system). It

is clear that the present definition coincides with Rosenbrock's

definition Z3. Note also that for the particular case of nongen-

erated systems with D = O, the Z.T. defined here are the set of

roots of the transmission polynomials of system CA,B,C) defined

by Morse (MOR-73).

APPENDIX 2

STRUCTURAL RANK OF A MATRIX /209

Definition

w

A structure matrix M is a matrix which has a fixed number of

zero elements in certain positions and arbitrary p elements in

others. The space of R p parameters is associated with nonzero

elements such that each point d E a _ defines a matrix M = _T(d).

Conversely, for each matrix M with nonzero p elements there is a

structured matrix M such that M=M-Cd) for d E aP./. The structural

rank of a matrix M, notated gr(M)* is given by:

gr(M) = Max (rank M-(d)

d ER p

Several algorithms are found in literature to determine the

structural rank based on different notions, among which:

1 - Davison's algorithm (DAV-77), based on the fact that

gr(M) is the rank of almost all matrices M(d) for d ¢aP. It

*gr: as "generic rank" in English

247



simply consists of arbitrarily selecting (pseudo-random generation

of numbers) a point d and of determining the rank of M(d) by a

standard technique.

2 - The algorithms based on an adaptation of graphic concepts

(SHI-76, MOR-78, HOS-80, BUR-83, JOH-84, .... ).

3 - The algorithms based on the property that the structural

rank of a matrix is the maximal rank determined as a function

of its nonzero parameters. It is therefore the sum of nozero block

diagonal dimensions of a maximjal peDmutation of matrix CEVA-84).

To possibly help the reader, let's go back to Evans and Krus-

er who give in (EVA-84) an APL computer program for the structural

rank of a matrix.

APPENDIX 3 /210

ACCESSIBILITY MATRIX OF A DIRECTED GRAPH ASSOCIATED WITH A LINEAR
SYSTEM

Given the linear system:

0

X = A X + B U X _ Rn, U_ Rm

Y=CX y_R p

Let us associated the directed graph D = (V,L) = (U U X L) Y, L)

with the system. The peaks V correspond respectively to inputs

U = {u1,..., Um}, to states X = {x1,..., xn } and to outputs Y --

{YI''''' Yp}" L is the set of directed arcs (Vj, V i) from,peak Vj

to peak Vi; the arcs (xj, xi), (um, xi), (xj, yi ) EL if and only if

aij / O, bij # 0 and cij # 0 respectively. The corresponding ad-

jacency matrix is:
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X U Y

[:o,!ixoM = 0 U

Qo O Y

Definitions

with ={I if & only if (Vj,Vi)(L
miJ 0 otherwise

1 - Peak Vj is sais to be ¢"accessible" from peak V i if there

is a path (drect or indirect) from V. to V..
i 3

2 - Graph D is said to be "accessible from the input" if and

only if the state peaks X are accessible from the input peaks U.

3 - Graph D is said to be an "accessible output" if and only

if the output peaks are accessible from the state peaks.

4 - If graph D is accessible from the input and has an acces-

sible output, then it is "accessible from the input-output".

The accessibility matrix corresponding to graph D is of dim-

ension k x k (k=n+m+p) and in the form:

X U Y

R = 0 0 U

Q H Y

where E, F, Q and H are the state, input, output and input-output

matrices respectively, and are given by (SIL-78):

/211

E=E +E 2 k÷ °°, ÷ E

o o o

= (I + E + E 2 + ... + Ek-l) F

0 0 0 ?

= Qo (I + E + E2 + ... + E k-1 ]

o o _-I
_'= Qo (I + E + E2 + ... + E ) F

0 0 0 0

and eL3 = I, f.. = I, qi = 1 _ h.. = 1• tl j tj

_j _o & _ij _o
=0 & h. =0

: o, fij : o,eij qlj lj

if & onl.v if

otherwise

"eij _ 0, fij # 0,iiI
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The accessibility matrix R may be determined graphically
as follows:

eij = 1, fij = I, qij = I and hij = 1 if there is a path

between the peaks xj, uj, xj, uj and the peaks x i, x i, Yi' Yi

respectively.

eij = O, fij = O, qij = 0 and hij
= 0 otherwise.

Note that h.. = i if -1Q'_," f_'a = 1 for certain rE{ 1,2,...,n} •la

Theorem (SIL-78)

System (C,A,B} is accessible from the input if and only if

matrix F does not have a zero line, and has an accessible output

if and only if matrix Q does not have a zero column and is acces-

sible from the input-output if and only if matrix H has neither a

a zero column, nor a zero line.

APPENDIX 4 /212

CALCULATION OF THE DERIVATIVES OF THE CRITERION USING THE

VARIATIONS METHOD

To determine the derivatives of the criterion, we will use

the same procedure as Levine and Athans (LEV-70). To accomplish

this, the three following results are necessary:

Theorem CBEL-70} CSIN-81}

If the integral x = -of® eAt c e Bt exists for all C then it

represents the unique solution of equation;

AX + XB = C
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Theorem (BEL-70) (SIN-81)

For a small number _, and by limiting ourselves to an expan-
sion to the Ist order, we have:

(A+ EB)t At t eA(t_s ) eA s
e = e + _I B ds

o

Kleinman's Lemma (KLE-66}

If f(X) is a trace function. It may be expressed:

f(X+eAX) = f(X) + c Trace {M(X) . AX }

therefore, when _ ÷ 0, we have:

df(X) MT_X = (x)

Let us consider the ,system:
o

X = AX + BU

Y = CX

and the quadratic criterion:

= UTj f (xTQX+ R u) dt
o

Let us apply U - -KY, the closed loop system becomes:

0

X = (A-BKC) X - DX

and its solution is X = eDT X

therefore the criterion becomes:

J(D) = Tr { f e DTt QI(K,C) eDt dt Xo }
o

with

X = E { X(o) xT(o)}
o

QI(K, c) = Q + C T K T R K C

Let us now assume that the system parameters undergo small

variations, i .e.:

/213
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A ÷ A + c A AA

B ÷ B+c "AB
B

C ÷ C+e "AC
C

K ÷ K + CK " AK

with _A' _B' _C and CK

magnitude: _A _ _B = _

the small real numbers of the same order of

C= _K

The closed loop system is expressed:

O

X = (D +e,AD) X

with AD = AA - AB KC -AB.AK.C- BK A6

and the criterion becomes:

J(D+eAD) = Tr[f®e (D+eAD)Tt

[o QI(K+eAK, C+EAC) • (D+eAD)t dt Xo]

By1eRpanding the above expression to the 1st order, taking

into account the preceding theorems and properties as a function

of the trace, we obtain:

J(D+EAD) = J(D) +¢ Tr {2s(cTKTR-PB)A (KC) + 2 SP A(A,B)}

with:

DTp + PD + Q + cTKTRKc = 0

DS + S D T + X = 0
o

AD = AA - AB. KC - B.A(KC)

A(KC) = AK.C + K. AC

A(A,B) = AA - AB.KC

Two variation cases are considered:

I - Variation in A and B only

In this case, we have:
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from which

J [D+eA(A,B)] : J(D) +e Tr {2SP a(A,B)}

and the application of Kleinman's lemman gives:

_J --=2PS

-_ (A,B)

this case combines the two situations: /214

.variation in A alone:
_J

-2PS_A

.Variation in B alone-
_J

_B
-- 2 PS C T K T

2 - Variation in K and C alone

In this case we have: AD =_ BA(KC)

A(A,B) : o

and the "criterion is expressed:

J [D-c B A(KC)] = J(D) +e Tr {(2S cTKTR - 2 SPB) A(KC)}

which gives us:

_J

_: 2 (RKC- BTp) S

This formula combines two cases:

.variation in C alone
J K T_--_= 2 (RKC- BTp) S

.variation in K alone: AD :A(A,B)

A(KC) = O
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APPEND IX 5

SYNTHESIS OF A DECENTRALIZED OBSERVER BY PARAMETRIC OPTIMIZATION /215

In our paper, we have discussed the synthesis of decentralized

dynamic controls (decentralized observers). Howe_er this problem

is the same as that of the synthesis of the decentralized static

controls of an augmented system which we will determine now:

Given a system (.with N control stations) with its global

state equation:
o _, _.

X = A X = B U X _R n, U _R m

Y:CX y(R p

Let us assume that the controls of subystems are created by

dynamic compensators given by the following global equation:
o

Z = F Z +G Y ZER q

U=H Z+ Ey
(A5.2)

where matrices F, G, H and E are constant of of the appropriate

dimensions and verify the structural stresses on the control (block

diagonal structure of a complete decentralization).

When control (A5.2) is applied to system (A5.1), the closed

loop system is described by:

o _ A + B EC BH
r = =

G C F
o

or again r = (A+BKC) r : Dr

n q

with :

= "'" - , B = ..I 0 n K = E * I OA P

m q P q n q

(A5.3)

(AS.4)

The problem therefore consists of determining the matrix K

(which represents the compensator) which stabilizes the closed
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loop system (A5.4) and minimizes the following quadratic criterion:

with:

J = f® L(X,Z,U) dt
o

u

r T T *L= Qr +u R U

the control may be expressed:

u = H Z + E Y : (EC H) r

We therefore have:

H) Cr

uTR * U = r T CT (E H) T R (E H) C r

H T C T K T
=r F Cr=r RKC

Let us replace this relation in L, we obtain:

= C T KT T
L r T (Q + R K C) r = r Qk r

The problem therefore takes on the following form:

mfn J(K) = I°° r T Qk r dt
K o

O

under r = (A+BKC)r = D r

/
This problem may be expressed (Vlll.2)

min J(K) = Trace (P r )
o

K

under f(K) = DTp + PD + Qk = 0

F(K) = O

with r = r(o) r(o) T
o

where F(K) represents the stress on the control structure.

The necessary optimality conditions of this problem are:

dJ : 2 (RKC - BTp) S CT
dK

DTp + PD + Qk = 0

DS + S DT + r :,0
o

/216
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and the solution may be obtained by one of the algorithms of

VIII.2.

If the system parameters vary, the application of the algo-

rithm developed in VIII.3 to the agumented system, for robust

static controls, provides a robust observer for variations in the

system parameters.
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